INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of tkis reproduction is dependent upon the quality of the
copy submitied. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reprodaction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA
313:761-4700 800.521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LITERATE PROGRAMMING AS A MECHANISM FOR

IMPROVING PROBLEM SOLVING SKILLS

A Dissertation
by

DEBORAH LYNN BYRUM DUNN

Submitted to the Office of Graduate Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 1995

Major Subject: Computer Science

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9534331

UMI Microform 9534331
Copyright 1995, by UMI Company. A1l rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI

300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LITERATE PROGRAMMING AS A MECHANISM FOR

IMPROVING PROBLEM SOLVING SKILLS

A Dissertation
by
DEBORAH LYNN BYRUM DUNN
Submitted to Texas A&M University

in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY
Approved as to style and content by: 7
J LS s (o
"~ S. Bart Childs William M. Liyely’
(Co-Chair of Committee) (Co-Chair of Committee)
—_— C)
J£ 1 /(g
JohyZ. Leggett 7" Rodgel J.(Iﬂoppa.
ember , (Member)
O?MJM é/ | /Z) //Q/
Richard A. Vol¢
(Head of Department)
May 1995

Major Subject: Computer Science

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

Literate Programming as a Mechanism for
Improving Problem Solving Skills. (May 1995)
Deborah Lynn Byrum Dunn, B.B.A., Stephen F. Austin State University;
M.S., Stephen F. Austin State University

Co-Chairs of Advisory Committee: Dr. S. Bart Childs
Dr. William M. Lively

Software maintenance is becoming an increasingly important factor in determining
software costs. Researchers are investigating methodologies for improving program
development and documentation which may, in turn, reduce maintenance costs. The
result of the design phase of software development affects the quality of the code which is
written and implemented. The ability with which a programmer solves a given problem
directly affects the quality of the program developed for the solution.

An increasing amount of research is being performed in the area of problem solving
and methods by which we teach novice programmers to solve problems. Many of the
difficulties experienced by novice programmers are not a result of misunderstanding the
language constructs, but a result of problems with forming a solution to the problem. The
manner in which a novice programmer solves a problem will directly affect the program
that is produced.

Knuth coined the phrase “literate programming” to refer to programs which are meant
to be read by humans, as well as executed by a computer. His WEB programming

methodology was designed to encourage pseudocode development, stepwise refinement,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and documentation of code, including the design rationale, prior to the actual writing of
code. The methodology should also produce programs in which the documentation is
highly correlated with the code.

This research involved the adaptation of a methodology which can be used to improve
the software development process and the evaluation of programs which are developed in
introductory computer science courses. The methodology combines literate programming
with the concepts of problem solving to capture, document, and emphasize the problem
solving process. The production of well-designed, readable, maintainable software for the
solution. of problems is the goal.

The methodology was tested and the results compared with previous introductory
computer science classes. A group of novice programmers with limited programming
experience utilized the methodology successfully in the development of problem solutions.
The design solutions were then successfully used in the implementation of the
accompanying programs. Since the implementation of the methodology was successful for
the study, we feel the adaptation of the methodology is viable and should be tested in

successive classes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my husband Henry and my parents Burton and Aura. Their constant love and support

allowed me to complete this work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vi

ACKNOWLEDGMENTS

I want to thank Dr. Bart Childs for providing me the guidance to accomplish this
research. His patience and encouragement gave me the strength to complete this work. I
feel privileged to call him a friend and mentor. I also want to thank Dr. William Lively for
providing me the guidance and support to complete this research. I will never forget these
two men.

I also sincerely thank the members of my committee, Dr. John Leggett and Dr. Rodger
Koppa. Both members have provided guidance and encouraged me and I am proud to
have worked with such fine researchers. A special thanks goes to Dr. Stephen Smith as
Graduate Council Representative for providing support and encouragement.

Others deserving a very special note of gratitude are Peter Nuernberg for assisting
with the test study and providing feedback on my ideas; Marie Legare for keeping me
sane; Michael Vidlak for his constant friendship and support; Hiroko Fujihara for always
being there; my father for never letting me lose sight of my goal; and especially my mother
for always encouraging me and never letting me forget to laugh.

Finally, I thank my husband Henry for his love, support, encouragement and, most of

all, his patience.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vii

TABLE OF CONTENTS

Page

ABSTRACT . .. i i e e e e e e e e i

19330 (67 & (0 e v

ACKNOWLEDGMENTS . . . ittt i e et vt e et ee e inenn vi

TABLE OF CONTENTS i it ittt ittt it ettt e e vii

LIST OF TABLESt i it i it ittt e e e te i x

LISTOF FIGURES i it it i ittt et e et i e e xii
CHAPTER

I INTRODUCTION o it it s e s i e e e et v eean 1

LA Background ittt it eneennnn 1

IB Research Objectives 3

LC Overview . .o v i i ittt it e e e e e 3

I LITERATURE SURVEY it ii it e ene 4

ILA The Software Development Process 4

ILB Problem Solving 6

ILC Literate Programming . . . « « v v v v v v v v v v v ie e o s s e 13

ILD Software Engineering Conceptso v vt v v v v n 19

ILE Using Literate Programming to Teach Good Programming Practices 21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

viii
TABLE OF CONTENTS (CONTINUED)

CHAPTER Page

ILF Using Literate Programming to Improve Problem Solving Skills .. 22

III DESIGNOFATESTSTUDY i ittt iiiinnnnnnn 23
IILA Selection of Participants 23
II1.B Teaching Introductory Students 29
III.C Literate Programming and the Design of Solutions 30
INID Design . . o v v v vttt i e i i i e s e 51
IILE Participants ot i v it it i et et et e e e e 52
IILF Methods of Measurement 52

IV IMPLEMENTATION OF ATEST STUDY 57
IVATest Study . . . o v ot i i i i e e e e 58
IV.B Teaching Assistant. oo i i ittt 61

V. RESULTS .. .ot i i e e i e e 62
V.A Background/ Ekperience of Test Study Participants 62
V.B CS/1Class Information 66
V.C Student Classification Distribution. 67
V.D Problem Solving Performance 68
V.E Programming Performance 1
V.F Exam Performance 75
V.G Course Performance,, 78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ix

TABLE OF CONTENTS (CONTINUED)

CHAPTER Page

V.H CPSC120 Performance . . « . v v v v v v v v v et et e et e e 82

VI CPSC210 Performance . . v v v v v v v v v v e et e e e en o n o 85

V.J Student Evaluation of CPSC 110 Teaching Methodology 90

VI SUMMARY, CONCLUSION, AND FUTUREWORK 93

VILASummary v e 93

VIB Conclusion i i i ittt it ettt it e et e e L9

VI.C Extensions and Future Research 96

REFERENCES . © .« + v e v e ee e e e e e e e e e e e e 98
APPENDIX

A COURSE MATERIALS i it ittt e e i i i 103

B OVERALL COURSE STATISTICS v ... 189

C INDIVIDUAL COURSE STATISTICS, 192

D INDIVIDUAL PROBLEM SOLVING TEST STATISTICS 215

E SUMMARY CS/2 COURSE STATISTICS 217

F STUDENTREACTIONS TOWEB v v v vt ittt s e e 222

2 0 - 268

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

TABLE Page
1 Unusual or Exceptional Computer Experience of Subjects. 63
2 High School Computer Experience of Subjects 63
3 Problem Solving Issues . . . v v v v v v v v e i i v e e e e 65
4 Initial Problem Solving Ability, 66
5 Student Distribution by Classification (Percent) 68
6 Student Distribution by Major (Percent) 68
7 Mean Problem Solving Scores — Labs (Percent) 69
8 Standard Deviation of Problem Solving Scores — Labs (Percent) 69
9 Mean Problem Solving Scores — Tests (Percent) 70
10 Standard Deviation of Problem Solving Scores — Tests (Percent) 7.0
11 Mean Program Scores . . « v v v v v v v v ot i i e e e 74
12 Standard Deviation of Program Scores 74
13 Mean Exam Scores it i e e i e 77
14 Standard Deviation of Exam Scores 77
15 Overall Grade Distribution (Percent) 79
16 Grade Distribution for CPSC/CSEN Majors (Percent) 79
17 Grade Distribution for Other Majors (Percent). 80
18 Overall CS/2 Grade Distribution (Percent) 82
19 * Average Gradefor CS/1and CS/2Courseso vu. .. 84
20 Average Difference in Grade for CS/2 Classes 84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

LIST OF TABLES (CONTINUED)

Overall Data Structures Grade Distribution (Percent)
Average Grade for CS/1, CS/2, and Data Structures Courses .

Evaluation of Fall 1993 CPSC 110H Students’ Reactions
Standard Deviation of Rating Scale
Student Distribution by Classification (Actual).
Student Distribution by Major (Actual)
Overall Grade Distribution (Actual)
Grade Distribution for CPSC/CSEN Majors (Actual)
Grade Distribution for Other Majors (Actual)
Overall CS/2 Grade Distribution (Actual)
Overall Data Structures Grade Distribution (Actual)
Problem Solving Statistics (Actual)
CS/2 Course Statistics - 1991 o0 v v v it i
CS/2 Course Statistics - 1992 it
CS/2 Course Statistics - 1993 vt i i

CS/2 Course Statistics - 1994 oo i i e

Page
86

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xii

LIST OF FIGURES

FIGURE Page
1 ContentsofaCaseStudy 00 9
2 Contents of an Expert’s Template 10
3 Knowledge Not Possessed by Novice Programmers 11
4 Program Audience« o i i i s e e e 12
5 TheWEBProcesso ineinenns 16
6 Defininga Problem i 20
7 Design Example - Table of Contents 33
8 Design Example — Problem Statement 34
9 Design Example — Inputs Required 35
10 Design Example — Qutputs Required 36
11 Design Example — Processing Required 37
12 Design Example — Algorithm Development 38
13 Design Example~Testing. i .., 39
14 Design Example—Index. 40
15 Program Example - Table of Contents. 41
16 Program Example - Problem Statement 42
17 Program Example - Inputs Required 43
18 Program Example - Outputs Required 44
19 Program Example — Processing Required 45
20 Program Example ~ Algorithm Development 46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xiii

LIST OF FIGURES (CONTINUED)

FIGURE Page
21 Program Example - The Actual Program 47
22 Program Example - Testing 48
23 Program Example-Index, 49
24 Program Example - List of Sections 50
25 CS/1 Course Grade Distribution 81
26 CS/2 Course Grade Distribution 83
27 Data Structures Course Grade Distribution 87
28 GradeProgression i i i e e 89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1
INTRODUCTION

I.LA Background

The software crisis has been described as the inability to develop reliable, maintainable
software in a timely, economical manner [3, 4, 6, 22, 26]. It is the focus of much attention
and concern by software engineers. A method by which we can reduce the cost of
developing software has been a goal for researchers in software engineering.

One of the predominant goals in developing software is to reduce both development
and maintenance costs. Software maintenance is a factor in determining software costs as
additional software is being developed. Typically, maintenance costs are approximately
seventy percent of the total software life-cycle costs [22]. The development cycle of a
software product may span one or two years, while the maintenance cycle can span five to
ten years [22]. Therefore, ea,seiof raaintenance is an importazt consideration in software
development.

Researchers are investigating methodologies for improving program development and
documentation which may, in turn, reduce maintenance costs. Soloway, et. al. [49, 68, 69
explored the “design of software documentation for maintenance” in order for the
maintainer of a program to be better able to understand the design rationale. The goal of
literate programming, a concept introduced by Donald Knuth [28], is “instead of imagining

that our task is to instruct a computer what to do, let us concentrate rather on explaining

This dissertation was prepared in the format of Communications of the ACM.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to human beings what we want a computer to do.” He stated “documentation is at least
as important as programming” (28].

Researchers have found that many of the difficulties experienced by novice
programmers are not a result of misunderstanding the language constructs, but a result of
problems with “putting the pieces together” [69]. Thus, the process by which programs
(and documentation) are developed should be examined.

An examination of the methods by which students are taught to program has led to
the conclusion that there is a failure to provide explicit instructions in the area of problem
solving [38]. Introductory computer science classes emphasize language features and
general programming practices, although course syllabi often emphasize problem solving
techniques.

Soloway states the major stumbling block is not the syntax of a language, but the
composition and construction of a program. He also suggests the way to overcome the
problem is to shift the method in which our introductory computer science students are
taught. He uses the concept of goals and plans to emphasize design rather than syntax [64).

The focal point of this research is the adaptation of a methodology which can be used
to improve the software development process and the evaluation of the programs which
are being developed. The methodology combines literate programming with the concepts
of problem solving to capture, document, and emphasize the problem solving process. The
production of well-designed, readable, maintainable software for the solution of problems

is the goal.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I.B Research Objectives

The objectives of this research are to determine the effects of:
1. emphasizing software engineering concepts of problem specification and design;

2. including the design rationale and expected test results in the program as
documentation;

3. developing more readable, understandable software as a result of the iterative problem
solving process utilizing the framework of literate programming;

4. using the literate programming paradigm in emphasizing problem solving by iteration,
review, and feedback; and

5. peer review as part of the design and development process.
This dissertation is the result of the development of a problem solving methodology

which may improve the manner in which software is designed and developed.

I.C Overview

A survey of the literature in the areas of problem solving and literate programming is

in Chapter II, including:
e the research that has been performed in the area of learning to program;
o problem solving and where it fits into the program development cycle; and

¢ Knuth’s WEB system and the concept of web programming.

The design of a test study to determine the effects of literate programming on problem
solving is presented in Chapter III.

A discussion on the implementation of the test study is in Chapter IV.

A description of the comparison groups for the test study and the results of the test
study are presented in Chapter V.,

Finally, a summary and the conclusion for the experiment may be found in Chapter

VI. Extensions to the test study and possible future studies are presented.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1I

LITERATURE SURVEY

The first three steps in the snftware development process are requirements,
specification and design [19]. The result of the design phase affects the quality of the code
which is written and implemented. Therefore, the ability with which a programmer solves
the given problem directly affects the quality of the program developed for the solution.
Extensive research has been performed in the area of learning to
program {12, 23, 25, 34, 35, 37, 38, 58, 64, 69]. A competent programmer requires a
knowledge of programming language syntax and constructs, as well as good problem
solving skills [35).

The literate programming methodology was introduced by Knuth upon his second
writing of TEX [28, 29]. The methodology encourages:

e correlation of internal code and documentation;
¢ pseudocode development;
e stepwise refinement; and

o the documentation cf code, including the design rationale, prior to the writing of code.

This documentation of the design rationale has become an important factor in the

development and maintenance of software (13, 14, 15, 33, 41].

IILA The Software Development Process

Software engineers have a goal of reducing software costs and increasing

productivity [4, 6]. In 1976, Bochm [3] predicted that software costs would escalate to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

over 80% of the total cost of a system (hardware and software). His prediction included
the statement that the portion of the effort spent on software maintenance was (and
would continue to be) greater than that spent on software development.

One of the techniques used for developing software is to adhere to a specific life-cycle
model. There are a variety of software life-cycle models from which to
choose [3, 5, 22, 24, 26, 60]. The purpose of a model is to provide some type of guidance
on the order in which major tasks should be carried out in the development and
maintenance of software. Fairley-[22] states that “different models emphasize different
aspects of the life cycle, and no single life-cycle model is appropriate for all software
products.” Regardless of the model name, all life-cycle models consist of some form of
problem definition, analysis, and design.

The first step in software development (or maintenance, for that matter) is to clearly
define the problem. Although this seems like an obvious and simple task, it sometimes
takes a great deal of time and many iterations. It is important that the users of the
system be involved during this phase, as well as subsequent phases.

The purpose of the analysis phase of software development is to determine the
requirements of the proposed system [26]. The output from this phase is a problem
specification which can then be used in the design of the system. A variety of tools and
techniques, such as data dictionaries, data flow diagrams, and flowcharts, may be
produced [22, 26, 60).

The design phase of the life-cycle model utilizes the outputs from the previous phases
to create a system which fulfills the users’ requirements [19, 22, 26, 60]. These preliminary

phases (in all of the models) greatly affect the quality of the software that is developed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

And, the quality of the design greatly affects the amount of maintenance that may be
performed on the system.

Boehm [22] estimates that 40% of the effort in the software life cycle is spent on
development, while the remaining 60% is spent on maintenance. Of that 40%, only 8% is
spent on implementation. The remainiug 32% is spent equally on analysis/design and
testing. It can be seen that a significant amount of time is spent on dctermining how the
problem will be solved and testing the solution. In order to improve the quality of our
software, we need to improve the methods by which we solve problems and develop

comprehensive tests for our solutions.

II.LB Problem Solving

A computer system is simply a problem solving tool [31). We should concern ourselves
with teaching students good approaches to using this tool; that is, better approaches to
problem solving. The first step in problem solving is actually understanding the problem.
Few of the problems presented in introductory textbooks are extensive [35]. Therefore, it
is relatively simple to define the problem. It could be said that a precise understanding of
the problem definition is itself a solution to the problem.

There are a variety of approaches to problem solving and programming. Wirth believes
programming can be introduced “as the art or technique of constructing and formulating
algorithms in a systematic manner, recognizing that it is a discipline in its own right” [79].
Introductory programming textbooks normally discuss some kind of approach to software
development, whether it be structure charts, top-down design, divide-and-conquer, and/or

pseudocode [30, 46, 57). The students may be taught to verbalize the problem. One way

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

this may be accomplished is by peer review and feedback. Students may also be taught to
visualize the problem. This may be accomplished with the use of pseudocode or
English-like expressions. Flowcharts, hierarchical diagrams, structure charts, and sketches
are used to give a better understanding of the problem [30, 46, 57). Textbooks typically
emphasize the top-down design techniques of breaking 2 problem down into parts [35].

Linn and Clancy [35] state that a good programmer needs both a knowledge of the
programming language and good problem solving skills. Introductory courses tend to
emphasize programming; that is, the product of good design and development [35).
Although this is chviously an important aspect of programming, the real problems exist in
the design of problem solutions [38]. Few textbooks used in the introductory courses
actually emphasize teaching the student how to develop good design solutions [35],
regardless of the university catalog description.

Soloway [64] states that goals and plans are the two key components in the task of
representing problems and solutions to a problem. Problem solving, and hence learning to
program, requires that students learn to construct mechanisms and ezplanations for those
mechanisms. Students are led to believe that programs are the output from the
programming process. Rather, they must be made to understand that programming is a
design discipline. Instead of the programming process being viewed as a program, it
should be viewed as “an artifact that performs some desired function” [64).

Many disciplines at the university level are beginning to require their students take at
least one computer science course. As a result, a large number of students enroll in the
introductory computer science courses. There is some controversy as to whether or not all

students should be taught to program [65]. The reason for the controversy stems from the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

difficulty with which novice programmers learn to program. It is for this reason there is a

growing amount of research in the field of learning to program.

I1.B.1 Solving Problems by Example

Several studies have been performed in the area of learning by example. Pirolli and
Anderson [50] found that examples can play an important part for students learning
recursion. Reder, Charney, and Morgan [54] found that the most effective manuals for
teaching students how to use a personal computer were those containing examples. The
work of Chi, et. al. [12] focuses on the theory that differences in students’ ability to solve
problems may stem from the differences in the way they understand examples. They
found that students learn weﬂ from example, provided they explain the examples to
themselves while they are learning.

As a result of some of this research, a software tool called EXPLAINER has been
developed [55). The purpose of EXPLAINER is to help programmers solve problems by
exploring previously worked-out examples. The software tool combines examples of code
with knowledge about how the examples were solved.

Some related work has been performed in the area of determining the mental
representations of programs that are formed by programmers [23]. Two sets of
programmers, novice and expert, were asked to study a program and later recall certain
information about the program. The results of the experiment showed that experts scored
significantly higher than novice programmers. The study tends to suppert the fact that
the experts have developed skills which help them develop better mental representations.
This difference in mental representations may be attributed to the difference in

programming knowledge and in program comprehension strategy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

II.B.2 Solving Problems With the Use of Case Studies and Templates

Linn, Sloane, and Clancy [38] found, in teaching program design, that teachers who
discuss how they solve prcklems, including their interpretation of the problem statement,
are more effective than those who present just the subject matter. Studies have shown
that explicit teaching of problem solving strategies greatly influences learning {37, 38].

Linn and Clancy have performed significant research in using programming case
studies or templates [34, 35, 36, 38]. Figure 1 is a summary of the information contained

in a case study [35).

A Case Study
¢ A programming problem statement.

¢ A narrative description of the process by which an expert solved the problem,
written so a novice can understand the approach.

¢ The expert’s source code.
¢ Study questions for practice in program design, analysis, and problem solving.
¢ Test questions designed to assess the students’ understanding of the solution.

Figure 1. Contents of a Case Study

Expert programmers hold certain templates that may be communicated to novice
programmers. The contents of these templates is summarized in Figure 2 [35).

Novice programmers often organize their knowledge in terms of syntax, rather than in
terms of a conceptual algorithm. This may be a result of how the students are taught [35).
A case study can be used as a method to provide explicit instructions on how to combine
the template knowledge with ;'uogram design skills to solve a problem. The students must
then practice generalizing their new skill to new problems. If too much emphasis is placed

on explicit strategies, students will not learn problem solving skills [25].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

An Expert’s Template

¢ A general representation of the action of a component, in pseudocode form.

¢ Sample programs which use the component.

¢ A pictorial representation of the action of the component.

¢ Verbal descriptions that facilitate communication about the component.

¢ Implementation steps for incremental development of the component.

{ Testing information, including possible difficulties that should be covered in the
tests.

¢ Debugging information which includes possible bugs, their symptoms, and ways
to anticipate them,

¢ Connections of the component to related components, to subtemplates, and to
supertemplates.

Figure 2. Contents of an Expert’s Template

The idea of templates has been extended to include on-line template libraries and case
studies [58]. A study was devised in which three groups of subjects (novice, intermediate,
and expert) were given access to an on-line template library. The template library
contains a variety of templates of algorithms that are typically taught in the introductory
programming courses. The subjects were then observed in order to ascertain how they
organized, learned and applied the various templates [58].

As expected, the experts organized their templates in a more abstract manner than
novice programmers. The case studies helped the novice programmers reuse templates
and all subjects found that the code and pseudocode representations helped them write

the code to solve new problems.

I1.B.3 Solving Problems With the Goals and Plans

Soloway and colleagues [67, 69] have studied bugs — errors in programs -~ and

misconceptions -~ misunderstanding in the minds of novice programmers - in an attempt

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

to identify the needs of novice programmers by understanding the kinds of mistakes they
are likely to make. Because there are many ways to solve a given problem, bugs are
identified using a goal/plan analysis. Goals are what is to be accomplished and plans are
those stéreotypical sections of code that are used to achieve the goal. Thus, bugs are the
differences between the correct plans and the incorrect implementations used by
novices [69].

Two observations were made based on the goal/plan analysis of novice

programmers [69]:
1. some bugs occur repeatedly in novices’ programs, while others rarely occur; and

2. most bugs occur because students do not fully understand the semantics of certain
programming language constructs.

Spohrer and Soloway also determined that novices have difficulty composing plans [69).
Soloway and Ehrlich [66] believe expert programmers harbor at least two types of
knowledge not possessed by novice programmers. These types of knowledge are shown in

Figure 3.

Expert Knowledge

{ Programming plans, which are code fragments that represent typical action
sequences in programs.

Q Rules of programming discourse, which are rules that specify programming

conventions

Figure 3. Knowledge Not Possessed by Novice Programmers

Programs are created by using programming plans which are modified to fit the needs of
the specific problem. The rules of programming discourse are used to govern the
composition of the plans [66]. This lack of knowledge regarding plans and the rules of

programming discourse is the reason for the difficulty experienced by novice programmers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

Soloway’s research [64, 69] suggests that it is not the language constructs which prove
difficult for novices, but actually composing the program. Experts possess knowledge of
language syntax, semantics, and strategies for coordinating and composing the
components of a program.

Soloway believes a program has two audiences [64], as shown in Figure 4.

The Audiences for a Program
¢ The computer, which, based on instructions is a mechanism for how a problem is
solved.

¢ The human reader, who needs an ezplanation for why the program solves the
problem.

Figure 4. Program Audience

Therefore, Soloway believes that “learning to program amounts to learning how to
construct mechanisms and how to construct explanations” [64].

Soloway’s proposed curriculum has two underlying assumptions [64]:

1. Tacit Knowledge. Although experts are not necessarily conscious of the strategies
they employ to solve a given problem, scientists must “make explicit that which was
implicit.” We (as scientists) must tease out the tacit knowledge.

2. Whorfian Hypothesis. Benjamin Whorf suggested that “language determines
thought”; that is, a person can only think of something if they have a word for it.
We can use a weaker claim that “language aids thought” to say that students cannot
learn what is necessary unless it is explicitly taught to them.
Goals and plans, therefore, are key components in solving problems [64, 69]. Goals are
the requirements for a problem and plans are those “canned” solutions for solving the
problems. In teaching problem solving and programming, a key objective must be to teach

methods of abstraction such that every problem does not appear to be new. Novices

should be taught that every new problem can be viewed in terms of old problems [64].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

Students must also be taught that programming has something in common with other
problem solving tasks [64). Programming should be thought of as a “design discipline”
with the output being an artifact or mechanism that, “when set in motion, produces some
desired effect” [64). Programmers must provide some trail as to how and why an artifact
was designed a particular way. This trail of information, or explanation, can then be used
by the next programmer who is required to modify the artifact. The product of the
programming process can be viewed as mechanisms and explanations. In an introductory

course, the students must be taught to construct these mechanisms and explanations [64).

II.C Literate Programming

Literate programming is Knuth’s solution for better documentation and readability of
programs [28]. Literate programming using the WEB system is concerned with writing
programs as “works of literature” [28]. Knuth [28] developed the WEB style of
programming for writing systems programs. However, there is some evidence that literate
programming, if used frequently, might be able to reduce the problems faced by beginning
pfogrammers. Smith [62, 63] states once a programmer becomes familiar with the WEB
style of programming, the process of understanding and developing programs is simplified.
Literate programming facilitates problem solving by “streams of consciousness” [28] to
minimize the intimidation for beginning programmers.

Brown and Childs [8] believe the WEB style of programming has several advantages over

the traditional style of progrémming. The WEB system:

e encourages the organization of code based on psychological, rather than syntactic
constraints;

o makes the structure of the program more visible to the reader; and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

e encourages an explanatory style of writing, leading to more careful consideration as

to the details of the program.

Some of the basic references for literate programming are [8, 17, 28, 45, 52, 53, 62, 63].
Research relevant to literate programming has proceeded along the lines of tool
development and development of WEB-like systems. The majority of the work in the tool
area has dealt with constructing an environment in which WEB programs may be more

easily developed [2, 8, 45].

II.C.1 Organization of a WEB

The WEB system incorporates two languages, a formatting language and a
programming language. The two languages are combined to document a program, as well
as express an algorithm in a manner suitable for a computer [45). Thus, in order to write
a WEB program, it is necessary to know a high-level language, a formatting language, and
the WEB rules [8]. Knuth [27, 28] selected TEX as the formatting language and Pascal as
the high-level programming language for his WEB system.

A WEB source file is made up of program statements written in the programming
language and documentation written in the formatting language. A WEB program is made
up of groups of statements, called sections. Each section has three
parts [27, 28, 40, 45, 52, 59]:

1. Ezplanatory Material. This part provides a description of the section. It should

include the purpose of the section, along with (possibly) the design rationale. It is
written in the document formatting language.

2. Definitions. This part contains any macro or format definitions.

3. Program Code. This part contains small pieces of the program. It is written in the
high-level programming language and is processed by a compiler. Ideally, the code
part should be no longer than about twelve lines so that it is easily comprehended [27].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

The three parts must be in the above order for each section, and any part may be empty.
An example of a WEB source file may be found on pages 121-123 in Appendix A.

A WEB section begins with ‘@#’ or ‘@U’, where Ll denotes a space. The ‘@+’ denotes the
beginning of a major section or a chapter. A section ends at the beginning of a new
section or at the end of the file.

Sections are numbered automatically, with the first being section 1. The programmer
does not have to be concerned about the section numbers. Programmers assign names to
each section and can then refer to a section by name, rather than number. The section
name should be a short description indicative of the contents of the section. Every WEB

program has one unnamed section which designates the main program.

I1.C.2 Processing of a WEB

The procedure for processing a WEB is shown in Figure 5 [28]. The WEB source file is
used to produce a typeset document suitable for the human reader and a high-level
program suitable for compiling and executing by a computer [39, 45].

TANGLE takes as input the WEB source and produces as output the high-level source
code which can then be input to a compiler. TANGLE completely ignores the
documentation in each section. The source code produced by TANGLE is not meant to be
read by humans [28]. Therefore, TANGLE does not go to great pains to format the resulting
source code. An example of TANGLEd output may be found on page 124 in Appendix A.

WEAVE takes as input the‘HE_B source and produces as output a TgX file. The
documentation part of the code is copied directly to an output file; the definition and code
parts are pretty printed [45]. WEAVE automatically generates a table of contents, an

alphabetized cross-reference index, and an alphabetized list of section

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

HLL
SHLL Compiler Object
823? Program
TANGM
WEB
Source
Code
mv\
TeX TeX Device
Source Independent
Code File

Figure 5. The WEB Process

Loader Program
for
Computer

Execution

DVI Typeset

|_Driver Documentation

for
Humans

16

names (27, 28, 40, 45, 52, 59). The resulting TEX file may then be processed to produce a

device independent (DVI) file which may be viewed on the screen or used as input to a
printer driver for hardcopy. An example of WEAVEd and TgXd output may be found on

pages 125-130 in Appendix A.

II.C.3 Documentation

The literate programming paradigm encourages more than just documentation, it is

designed for “explaining to human beings what we want a computer to do” [28]. It has

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

been said that real world programs are not developed to be read, but rather to be
executed [1]. However, real world programs are modified. The documentation which is
produced using literate programming should benefit the programmer developing the
software, as well as the programmer maintaining the software. Some believe the critical
characteristic of a WEB program is that the exposition is independent of the code [32]. This
allows the explanations to be directed toward the human reader [32]. 1t is also a general
belief that the WEB style of programming makes debugging easier, primarily due to the

expository residing with the code [70, 71, 77].

II.C.4 Software Maintenance

As some have discovered, one of the benefits of using literate programming is the
ability to associate a given design step with its code [76). Williams states a literate
program is more than just a typeset document. It allows the programmer to produce
higher quality programs by “unfolding program code in English” [78). This “in your
face” (sic) presentation of documentation [43] can simplify the maintenance process when
design rationale and implementation decisions are presented with the code.

The reason for improved maintenance with the use of literate programming is due to
the fact the documentation is presented with the code. It has also been reported that the
code produced using WEB is more readable [80]. Those familiar with program maintenance
state that experience has shown “even mediocre literate code is easier to modify than
good non-literate code” [80]. The benefits realized in the maintenance of literate programs
is more than likely attributable to the quality of the design documentation, which is an

integral part of the WEB style of programming,.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

II.C.5 Expressed Concerns

There are those who have other concerns regarding literate programming. Some are
concerned with the documentation created during the development of a program.
Mehringer [43] says “I'm a software developer - not a typesetter.” While the use of TEX
provides the ability to typeset mathematics, 2 minimum amount of TgX knowledge is
actually required to produce a readable, professional-looking document. The primary
hindrance seems to be that programmers are not necessarily authors. Ramsey [51] says his
findings indicate it is “difficult to teach people to write.”

Both of these quotes offer proof that programmers tend to view themselves as people
who work with computers, rather than people who produce information that is used by
other people. Programmers should view themselves as authors of documentation. They
must realize that a documented program is not for personal benefit; rather, it should be a
well-written document (free of grammar and spelling errors) that is produced for the

benefit of others.

II.C.8 A Literate Programming Environment

Both Knuth [28] and Thimbleby [73] envisioned an interactive programming
environment for WEB; however, neither made steps toward the implementation of such an
environment. The Literate Programming Tool (LPT) created by Brown (7, 8] was a step
in that direction; however, it is a display-only viewer which shows the control flow of a WEB
and provides no interactive editing capabilities.

A prototype environment, web-mode, developed by Motl [45), provides a facility which

can support the goal/plan analysis type of development suggested by Soloway [64, 66, 69)].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

Motl’s environment provides interactive editing capabilities utilizing the aids provided by
WEAVE. The user can view the table of contents, the cross-reference index, and the list of
section names. The user may select a section name or an index entry and traverse the
list(s) associated with the entry [45].

A Literate Programming Environment could easily support development of programs
in the format of goals being expanded into plans. The web-mode environment is sensitive
to the creation and use of section names. When a section name is created, it is added to
the list of existing section names. A “stub” is placed in the WEB file to remind the
programmer that the section has been referenced and, therefore, must be expanded, or
written. In essence, it creates the section in order for the programmer to not receive a
compiler error if the section has not yet been written. This allows for incremental
development and testing. It also serves as a reminder to the programmer that the section

must still be developed.

II.LD Software Engineering Concepts

Fairley [22] states that “the primary goals of software engineering are to improve the
quality of software products and to increase the productivity and job satisfaction of
software engineers.” There seems to be little emphasis on these goals in the introductory
computer science classes. It appears that the majority of the emphasis is on programming.

Most computer science students eventually take a course which teaches software design
principles and problem solving skills. Typically, this course is taken during the junior or
senior year. The course description of the senior software engineering course at Texas

A&M University (CPSC 431) is [72]:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

Application of engineering approach to computer software design and
development; life cycle models, software requirements and specification;
conceptual model design; detailed design; validation and verification; design
quality assurance; software design/development environments and project

management.

One of the major pitfalls, then, is that our students are not exposed to problem
solving disciplines until they reach the software engineering class. As a result, students are
writing programs before they learn to solve problems.

The steps for defining a problem are shown in Figure 6 (taken from [22]).

Problem Definition

¢ Develop a definitive statement of the problem to be solved. Include a description
of the present situation, problem constraints, and a statement of the goals to be
achieved.

¢ Justify a computerized solution strategy for the problem.

¢ Identify the fanctions to be provided by, and the constraints on, the hardware
subsystem, the software subsystem, and the people subsystem.

¢ Determine system-level goals and requirements for the development process and
the work products.

¢ Retablish high-level acceptance criteria for the system.

Figure 6. Defining a Problem

It is Pierce’s belief that we should focus on preparing students to enter industry with
“the theme of process improvement for quality and productivity” [48]. To this end, he
“subscribed to the conventional .wisdom” that the students produce a system from scratch
in the software engineering course in order to experience all of the phases in the life-cycle.
However, he was finding that few students succeeded in anything but a high-level design,

and those systems that were implemented were poorly designed, documented, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

tested [48].

A major reason for the lack of success seems to be that the students, even at this level,
focus on completing the project, rather than defining the problem. In an attempt to make
the course (and the students) more successful, Pierce implemented a maintenance-based
project [48]. In addition to having the potential for completion, it probably better
prepares the students for the “real-world” of maintenance. Those projects that are not
completed are carried over into the next semester of students.

There has been some attempt to introduce software engineering techniques at the
introductory levels in the curriculum [21, 56, 75]. The Rochester Institute of Technology
introduces students to the foundations of software engineering during the second year [21].
Others have used laboratories in the introductory course iﬁ an attempt to focus on
problem decomposition, data abstraction, documentation, design specification, testing,
and code review [56]. In each case, attempts are being made to expose students to

software engineering concepts earlier in their academic career.

ILE Using Literate Programming to Teach Good Programming Practices

Shum and Cook [61] incorporated the literate programming paradigm into the
teaching of a junior-level course. Their goal was to encourage students to write
informative and usable documentation in order to facilitate program maintenance. They
used literate programming to emphasize good documentation practices; that is, writing
programs to be read by humans,

Introductory computer science instructors, too, are interested in good programming

(and documentation) practices. However, an emphasis on problem solving should be the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

first step. Good programming practices will naturally follow.

ILF Using Literate Programming to Improve Problem Solving Skills

Knuth envisioned literate programming as a tool for systems programmers to develop
well-documented, maintainable programs [28]. Literate programming can also be used as a
tool for novice programmers to begin to develop good problem solving skills.

As shown in Figure 4, Soloway believes a program has two audiences: the computer
and the human reader. Knuth would (probably) concur. Literate programs are designed,
not only to solve 2 problem using the computer, but for the human to understand the
thought process behind the design solution.

Figure 1 and Figure 2 contain discussions of techniques that have been used to
improve the programming skills of novice programmers. The literate programming
methodology can be used to capture and represent the information contained in case
studies and templates.

The use of literate programming encourages the programmer to solve a problem using
the goal/plan analysis techniques presented by Soloway. The use of literate programming
provides novice programmers the opportunity to develop the expert knowledge, described
in Figure 3, that is typically not available to them.

One of the primary functions of literate programming, however, is to capture a
programmer’s thoughts about the problem solution. A major task in software engineering
is to define the problem. Figﬁre.ﬁ contains a list of the steps involved in problem
definition. The literate programming development methodology can be used to explicitly

address each of the issues involved in planning a software project.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

CHAPTER III

DESIGN OF A TEST STUDY

A program development methodology was proposed for use in introductory computer
science course(s) to determine the effects of literate programming on program design and
development by novice programmers. The goal of the use of this methodology is to
develop and enhance problem solving and (therefore) program design skills for beginning
programmers. Results were expected to show that use of the methodology will develop
problem solving skills along with the usual programming skills. The methodology included
developing measures which were used to assess the success of the methodology.

Knuth’s style of literate programming was used as a framework to assist students with
program design and development. Literate programming makes use of sections which
include code and documentation. Sections should be small, simple thoughts, similar to
paragraphs in literary works. These sections are linked through a system of structured
pseudo-code.

Literate programming gives the programmer the ability to piece together the design
(and corresponding code) in the manner in which it is conceptualized. The student is not

required to adhere strictly to the common top-down, procedure-oriented approach.

ITII.A Selection of Participants

Literate programming should be usable at any level in the curriculum to enhance the

problem solving skills of students involved in software development. It can be considered 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

structured means of doing what programmers should be doing anyway; that is,
pseudo-code, top-down and bottom-up design, and documentation,

The potential problems in teaching literate programming techniques to beginning
programmers (freshmen) and to programmers with experience (seniors or graduate

students) will be discussed in the following sections.

III.A.1 Literate Programming for Introductory Students

Freshmen computer science students arrive in the introductory course with little or no
computer experience. The term computer ezperience includes programming languages,
text editors, and software design and development techniques. The advantage of teaching
introductory students is they have not had ample opportunity to develop any
programming habits, poor or otherwise.

Pascal is a popular language in the introductory computer science class [75). Teaching
literate programming to freshmen requires the that syntax of a particular programming
language be taught. In addition, the use of various language constructs must also be
introduced. These factors may contribute to the difficulty in teaching the use of literate
programming at the introductory level.

The proposed literate programming paradigm includes the utilization of web-mode for
editing WEB documents. Introductory students must learn the GNU Emacs editor and the
web-mode editing environment. The topics may at first prove to be overwhelming to a
beginning computer science stud_ent, although each topic is intended for only cursory
coverage reflected by a one-page handout.

Introductory computer science students have difficulty viewing programming as a

means by which we solve problems. Computer science instruction, at the introductory

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

level, tends to emphasize programming, which is the product of problem solution
design [35]). Most textbooks give examples of programs, rather than demonstrate the
method by which the given solution was derived [35].

Introductory computer science students have acquired few problem solving skills,
either through experience or from instruction. The programming problems encountered in
an introductory course are relatively simple and students see little benefit in program

design at the introductory level.

III.A.2 Literate Programming for Advanced Students

By the time a student reaches senior status, the student may be familiar with several
programming languages, including Modula-2, Ada, Pascal, C, and FORTRAN. Each of these
languages is supported by a WEB system. Thus, teaching literate programming to seniors is
not constrained to using one specific language and no time is spent teaching language
syntax. Advanced students are already familiar with language syntax and that will not
have to be taught along with the rest of the literate programming concepts.

One of the reasons for developing the literate programming style of programming is to
concentrate on “explaining to human beings what we want a computer to do” [28).
Advanced students have completed a minimum of four classes in which they write
programs. They have had ample opportunity to develop a coding style. However, seniors
are in the habit of instructing the computer what to do. They must be taught to approach
programming in a different manner.

Typical programming classes teach the student to solve problems using a top-down
approach [35]. WEB programming makes use of sections of code, along with using the more

common procedure-oriented approach. WEB sections are not subprograms, they are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

expanded inline. The use of WEB sections is a technique by which programmers design a
program in a “stream of consciousness” order [28]. Buyukisik [9] states literate
programming can be used as a program design language and these modules are not
procedures or functions in the traditional sense. Changing the way in which a person
writes programs, then, may be more difficult than teaching them to program with no prior
experience.

An advanced computer science student is confronted with difficult and extensive
problems. Typically, in order to solve the problem in a reasonable manner, the student
must utilize some type of problem solving technique. Thus, the problem solving
experience obtained by advanced computer science students has been acquired by practice
rather than learned through instruction.

The difficulty in changing the manner in which a person approaches a problem may
also be applied to the use of an editor. Senior computer science students have experience
using at least one editor. However, this does not necessarily mean the senior-level student
will learn emacs and web-mode faster or more easily than the freshman-level student.
Motl [45] found that although students had no difficulty in learning emacs and web-mode,
many of the features available were not utilized. This is apparently due to the tendency of
a person to use only what is required to solve the given task.

It may be possible that a novice user will tend to use more of the available features
because the novice is not constrained by any preconceived ideas of what features an editor
is supposed to provide. However, many of the files that are maintained by web-mode
would have to be examined in order to determine the possibility.

People tend to approach problem solving in a variety of ways. The fact that a senior

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

computer science student has some experience in this area may make it easier to teach
literate programming at an advanced level. The use of literate programming allows the
programmer to focus on higher levels of abstraction without being concerned about the
details [71]. This ability to delay the focus on lower level, or program code, details is
developed over time and after much practice. It may be difficult to dispel the belief held

by introductory students that programming is different from problem solving.

III.A.8 Discussion

It has been said the use of literate programming allows us to associate a given design
step with its consequences; that is, the resulting code [76]. Students should be taught that
problem solution design leads directly to the result, which is the program. The use of
literate programming encourages the inclusion of the design step in the source of the
resulting program. In all likelihood, the senior level student would have realized more
immediate benefit with the use of literate programming than the novice programmer.

It may appear that literate programs take longer to write than non-literate
programs [78]. One of the reasons for this may be that the documentation is being
developed with the program. Knuth stated that the total time for writing and debugging a
WEB program is no greater than that for a non-WEB program, even though the WEB program
is better and contains more documentation [28]. One other experience shows the
debugging time for literate programs is much less than for non-literate programs [71]. This
may be attributed to the fact that literate programs are better designed.

The development time required for literate programming did become a substantial
factor in teaching freshmen versus seniors. A freshman typically has not yet been forced

to develop any time management skills. The tendency of introductory students is to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

prolong the start of program development. The use of literate programming sometimes
caused the students to become frustrated at the time involved or caused them to overlook
the goal of literate programming and revert to merely instructing the computer what to
do. The solution to a problem is typically arrived at over a period of time. Advanced
computer science students have learned this by experience over the years and may have
realized the benefit of using literate programming techniques to document the solution to
the problem, as well as develop the code necessary to solve the problem.

One of the most important uses of literate programming is design by iteration. A
solution for overcoming the per(;eived difficulties in the use of literate programming seems
to be an emphasis on iteration and peer review. This technique should also be included in
the problem solving category because it is the method by which problems are solved and
solutions are derived. Design by iteration takes time, however. The solution to a problem
may be revised a number of times. The novice programmer typically does not practice
design by iteration for two reasons: lack of time and lack of experience. Thereis a
difference in emphasizing the use of literate programming for iterative design to senior
level students because they have experience in problem solving and have developed
time-management skills.

Knuth did not intend for literate programming to be used by novice programmers. He
designed the WEB system of programming for those “computer scientists” who were
comfortable with the use of several different languages [28]. However, literate
programming has been used successfully by computer science students [45, 61, 63), rather
than systems programmers. Novice programmers (that is, introductory students) can

utilize the literate programming paradigm in order to develop good problem solving skills.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

III.LB Teaching Introductory Students

The ACM/IEEE-CS Joint Curriculum Task Force presented a new framework for the
discipline of computing and a new basis for computing curricula [18, 74). The task force
addresses the role of programming in the discipline. Although it is clear that programming
must be a part of the curriculum and every computer science student should demonstrate
competence in it, “this does not, however, imply that the curriculum should be based on
programming or that the introductory courses should be programming courses” {18]. The
task force notes that programming languages are merely “tools” for the discipline.

The course description of the CS/1 course at Texas A&M University (CPSC 110)

is [72]:

“Basic concepts, nomenclature and historical perspective of computers and
computing; internal representation of data; software design principles and
practices; structured programming in a high-level language; use of terminals,

operation of editors and execution of student-written programs.”

This course description, as well as the implementation of the course, is quite likely
representative of the introductory computer science courses being taught at many
universities today. The description does not specify that students be taught problem
solving. However, problem solving techniques may be included in the principles of
software design and are, therefore, implied. Although the students are exposed to the
topic of software design principles, in reality, the majority of the time is being spent on

programming language syntax and execution of student-written programs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

III.C Literate Programming and the Design of Solutions

The theme of this test is that literate programming can be used in the introductory
computer science course to emphasize problem solving. This use will result in better
designed programs, and documentation will not be ad hoc as seems to be the norm.

The students are typically instructed to produce the following information in the

design of their solution:

e problem statement;
e inputs required;

e outputs produced;
e processing required;
e algorithm; and

e testing.

Although this information is requested, it is rarely produced as an integral part of the
code. It is probably produced in handwritten form or with the use of a word processor,
but rarely with the same set of tools as the actual code. Therefore, it is rather simple to
produce a code in which the design may easily be forgotten or ignored and the reasons for
these changes are lost.

A natural use of literate programming is to create a model for the design of problem
solutions. The use of sections allows the programmer/author to outline the solution to a
problem. The programmer will define a set of goals that are to be expanded into plans
through the structured use of pseudo-code.

The initial design solution for the problem can be produced as a literate program
without any code. The design process may then be iterated several times before arriving

at a solution. Once the final design is produced, the programming task can be performed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

Programming the problem merely involves writing the code to implement each of the
design steps. The literate programming paradigm provides a mechanism by which the
programmer explains to the human reader his/her solution to the problem before
explaining the solution to the computer.

For example, assume the problem to be solved is the quadratic equation. Although the
problem may be a familiar one, the design process should be used to arrive at an
acceptable solution. An example of the iterations in solving this standard mathematical
problem using this methodology are available via anonymous ftp from
ftp/pub/tex-web/web/DOCs. The files wm* are available in WEB and PostScript form. The
mathematics involved are easily represented in handwritten documentation; however, they
cannot be as easily represented using typical programming languages and accompanying
documentation. The literate programming paradigm enhances the representation of
complex (as well as not so complex) mathematical solutions. And the implementation of
the mathematical solutions require minimal knowledge of TgX.

The inclusion of graphics should also be a standard part of this approach. However, it
was not included in the CS/1 course because the students have not been exposed to an
appropriate drawing package.

The six design points (problem statement, input, output, processing, algorithm, and
testing), in conjunction with the literate programming paradigm, provide an outline with
which problems may be solved. The programmer may use literate programming to design
a problem solution much in the way an author designs a piece of literature. The first step
is to develop an outline and piece it together in the manner in which it is conceptualized.

The outline is expanded and refined through many iterations. Literate programming

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

provides the framework necessary for solving problems. The solution is outlined using
sections, which are similar to paragraphs. These paragraphs are iterated until a final

solution to the problem is reached. Suppose we have the following problem:

A rectangular house is situated on a rectangular yard. Given that the lawn may
be mowed at a rate of 2 feet per second and there exists a standard charge per
square foot, determine the cost of mowing the yard and the length of time the

job will take.

An example using literate programming to develop a solution to this problem follows.
Figures 7 through 14 contain the initial design, which is merely an outline that contains
no code. The WEB program contains sections which address each of the previously stated
design topics. Figures 15 through 24 contain the final version of the program. This final
version .f the WEB program contains the documentation and the corresponding code for

solving the problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lawn Service

December 2, 1994

Section Page

Problem Statement o it e e 1 1
Problem Inputso e e e e e 2 2
Processing Requirementsoiiveniiiiiiiiiiiien et iaiiieiiiieenennns 3 3
Problem Outputs ...t e 6 4
AlGORILBIM L. e e e 7 5
1= 8TV PPN 8 6
IN DX e e e e e 9 7

Abstract. Aggic Lawn Service is a dusiness which provides lawn care for the citizens of Bryan-

College Station. An estimale for a potential customer is provided which includes a cost statement
and an eslimated fime to complete the job.

Deborah Dunn

December 2, 1994

9:51

Figure 7. Design Example — Table of Contents

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

§1 Lawn Service PROBLEM STATEMENT 1

1. Problem Statement. Aggie Lawn Service is a business which provides lawn care
for the citizens of Bryan-College Station. An estimate for a potential customer is provided
which includes a cost statement and an estimated time to complete the job. The estimated is
based upon the area of the lawn and a standard (confidential) charge per square foot. Grass
can be cut at the rate of 2 square feet per second. It is assumed that a rectangular house is
situated in a rectangular yard. This estimate ignores any obstacles in the lawn, bare spots or
driveways, and does not account for breaks, slower/faster mowers, or the mower running out
of gas.

Figure 8. Design Example - Problem Statement

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

2 PROBLEM INPUTS Lavn Service §2

2. Problem Inputs. In order to provide an estimate for the customer, several items must
be received. It is assumed that a rectangular house is situated on a rectangular yard. The
following must be provided to solve the problem:

e length of yard
o width of yard
o length of house
o width of house

Figure 9. Design Example - Inputs Required

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

4 PROBLEM OUTPUTS Lawn Service §6

6. Problem Outputs. The customer will be provided with the final estimate which
includes the following items:

o the cost of mowing the lawn
o the estimated time (in minutes) to mow the lawn

Figure 10. Design Example - Outputs Required

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

§3 Lawn Service PROCESSING REQUIREMENTS 3

3. Processing Requirements. Two items must be calculated for the estimate. The cost
of mowing the lawn and the estimated time to complete the job must be calculated.

4. Givens (or Knowns). There is a standard (confidential) charge per square foot of lawn.
It is also assumned that grass can be cut at the rate of 2 square feet per second.

5. Formulas Needed. The following is a list of the formulas that will be needed in order to
provide the estimate.

Area of Yard = Lenth of Yard x Width of Yard
Area of House = Length of House x Width of House
Area of Lawn == Area of Yard — Area of House

Cost Estimate = Area of Lawn x Charge per Square Foot
Area of Lawn
2

Time Estimate
60

Time Eetimate =

Minutes Time Estimate =

Figure 11. Design Example - Processing Required

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

§7 Lawmn Service ALGORITHM §

7. Algorithm. The following steps must be taken to solve Lhe problem:
. Get length and width of the yard.

. Get length and width of the house.

. Calculate the area of the house and the yard.

. Calculate the area of the lawn.

. Calculate the cost of mowing the lawn.

. Calculate the time needed to mow the lawn.

. Present the estimate to the customer.

- O O W N e

Figure 12. Design Example - Algorithm Development

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

6 TESTING Lawn Service §8

8. Testing. The program will be tested with the following scenarios:

1. The bouse is a 25 foot square house situated on a 50 foot square yard. The charge per
square foot is $0.01. The area to be mowed is 1875 square feet. Therefore, the cost of
mowing the lawn is $18.75. The estimated time for completion is 15.63 minutes.

2. The house is 1' by 20’ situated on a 5’ by 25’ yard. The charge per square foot is $0.005.
The area to be mowed is 105 square feet. Therefore, the cost of mowing the lawn is $0.53.
The estimated time for completion is 0.875 minutes.

Figure 13. Design Example — Testing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

§9 Lawn Service INDEX 7

8. INDEX.

Aggies: 1.
confidential charge: 1, 4.
strange yard: 8.

Figure 14. Design Example ~ Index

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

Lawn Service

December 2, 1994

Section Page

Problem Statement ittt i e e, 1 1
Problem Inputsoo i i i e 2 2
Processing Requirementsottt i 4 3
Problem OUtputs\ vie ittt e e i e it et e, 9 4
ALGOTItEm .. o e e e e e 10 5
The Actual Programottt e ii ettt ciet ettt et renraenrennnns 11 6
T T T 12 7
IND X L e e e e 13 8

Abstract. Aggic Lawn Service is a business which provides lawn care for the citizens of Bryan-

College Station. An estimate for a potential customer is provided which includes a cost statement
and an estimaled time to complele the job.

Deborah Dunn

December 2, 1994

9:51

Figure 15. Program Example — Table of Contents

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

§1 Lawn Service PROBLEM STATEMENT 1

1. Problem Statement. Aggie Lawn Service is a business which provides lawn care
for the citizens of Bryan-College Station. An estimate for a potential customer is provided
which includes a cost statement and an estimated time to complete the job. The estimated is
based upon the area of the lawn and a standard (confidential) chatge per square foot. Grass
can be cut at the rate of 2 square feet per second. It is assumed that a rectangular house is
situated in a rectangular yard. This estimate ignores any obstacles in the lawn, bare spots or
driveways, and does not account for breaks, slower/faster mowers, or the mower running out
of gas. '

Figure 16. Program Example - Problem Statement

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

2 PROBLEM INPUTS Lawn Service §2

2. Problem Inputs. Inorder to provide an estimate for the customer, several items must
be received. It is assumed that a rectangular house is situated on a rectangular yard. The
following must be provided to solve the problem:

o length of yard

o width of yard

o length of house

o width of house

(Get Input Information 3) =

procedure Gel_inputl; *
begin “uwrite("Ploase enter the length of ;the yard:y,); “readin(yard.length);
“wrile("Pleass enter the width, 02, ,the yard: ,"); “readin(yerd width);
“write("Please enter, the length 0t the house:y’); “readin(house_len);
“write(°Pleasey enter the width of, ,the houne:y,’); “readin(house.width)”
end; “*

This code is used in section 11.

3. At this point I realize that 1 need to declare some variables in order to accomplish the
above input operations.

(Variable Declarations 3) =

“yard_length, yard.width: real;

“house.len, house.width: real; “"~

See also sections 7 and 8.

This code is used in section 11.

Figure 17. Program Example — Inputs Required

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

4 PROBLEM OUTPUTS Lawn Service §9

9. Problem Outputs. The customer will be provided with the final estimate which
includes the following items:

o the cost of mowing the lawn

o the estimated Lime (in minutes) to mow the lawn
(Provide Statement 8) =

procedure Print_Statement; ©
begin “writeln(Aggie Lawn,Service’ : 25); “writeln;
“writeln("The axea of the lavn, is: ", area.of lawn : §); “writeln;
“writeln(“The estimated contyis: 8", billing.amount : 5: 2);
“write(Theyestimated time for,completion is:yy’);
“writeln(culting_time_estimate : 4, " minutes)"
end; *”

This code is used in section 11.

Figure 18. Program Example — Qutputs Required

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

§4 Lawn Service PROCESSING REQUIREMENTS 3

4. Processing Requirements. Two items must be calculated for the estimate. The cost
of mowing the lawn and the estimated time to complete the job must be calculated.

5. Givens (or Knowns). There is a standard (confidential) charge per square foot of lawn.
It is also assumed that grass can be cut at the rate of 2 square feet per second.
(Constant Declarations §) =
“confidential charge = 1.25; “rate.of.culling = 2; "
This code is used in section 11.

6. Formulas Needed. The following is a list of the formulas that will be needed in order to
provide the estimate.

Area of Yard = Lenth of Yard x Width of Yard
Area of House = Length of House x Width of House
Area of Lawn = Area of Yard — Area of House

Cost Estimate = Area of Lawn x Charge per Square Foot

Area of Lawn
2
Time Estimate
60

Time Estimate =

Minutes Time Estimate =
{Calculations 6) =

procedure Calculate_Area; ~
begin “area.of_yard ~— yard_length » yard.width;
“area_of_-house «— house_len » house_width;
“area_of_lawn — area.of yard — area_of_house”
end; °”
procedure Caiculate_Cost_and_Time; ~
begin “billing_amount «— area_of-lown s confidential_charge;
“culting_time.estimaie — ares_of.lawn /(rate.of.culting + 60.0)"
end; "
This code is used in section 11.

7. I need some more variables declared in order to complete the above calculations.
(Variable Declarations 3) +=
“area.of.lawn, area_of.yard, area.of_house: real; ="

8. Oops, I almost forgot the last of the variable declarations. I need to declare the two areas
for my output.

(Variable Declarations 3) +=
“billing.amount, culting_time_estimale: real; “*

Figure 19. Program Example - Processing Required

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

$10 Lawn Service ALGORITHM &
1

e

Algorithm. The following steps must be taken Lo solve the problem:
. Get length and width of the yard.

. Get length and width of the house.

. Calculate the area of the house and the yard.

. Calculate the area of the lawn.

. Calculate the cost of mowing the lawn.

. Calculate the time needed to mow the lawn.

. Present the estimate to the customer.

- O O WD

.

Figure 20. Program Example — Algorithm Development

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

6 THE ACTUAL PROGRAM Lawn Service §l11

11. The Actual Program. This is where the actual program begins. This could appear
anywhere in the WEB program. The only rule is that the program actually begin with the
‘at-p’.

program Lawn._Service;
const "(Constant Declarations 5)

var “(Vatiable Declarations 3)
“(Get Input Information 32)
“(Calculations 6)

“{Provide Statement 5)

begin "Get_Input;
“Calculate_Area;

- “Calculate_Cost_and_Time;
“ Print_Statement

end.””

Figure 21. Program Example - The Actual Program

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

§12 Lawn Service TESTING 7

12. Testing. The program will be tested with the following scenarios:

1. The house is a 25 foot square house situated on a 50 foot square yard. The charge per
square foot is $0.01. The area to be mowed is 1875 square feet. Therefore, the cost of
mowing the lawn is $18.75. The estimated time for completion is 15.63 minutes.

2. The house is 1’ by 20’ situated on a 5’ by 25’ yard. The charge per square foot is $0.005.
The area to be mowed is 105 square feet. Therefore, the cost of mowing the lawn is $0.53.
The estimated time for completion is 0.875 minutes.

Figure 22. Program Example ~ Testing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

8 INDEX Lawn Service §13

13. INDEX.
Aggies: 1.
area.of_house: 6, 7.
aresof lawn: 6, 7, 9.
area.of.yard: 6, 7.
billing_amount: 6, 8, 9.
Calculate_Area: §, 11.
Calculate.Cost.and_Time: 6, 11.
confidential charge: 1, 5.
confidential.charge: 5, 6.
culling_time_estimate: 6, 8, 9.
Getlnput: 2, 11,
house.len: 2, 3, 6.
house.width: 2, 3, 6.
Lawn_Service: }1.
Prinl_Statement: 9, 11.
rate.of_culting: 5, 6.
readin: 2.
real: 3,7, 8.
strange yard: 12,
write: 2, 9.
wrileln: 9.
yard.length: 2,
2

3, 6.
yard.width: 2, 3, 6.

Figure 23. Program Example - Index

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

§13 Lavn Service NAMES OF THE SECTIONS §

{ Calculations 6) Used in section 11.

(Constant Declarations 5) Used in section 11.
(Get Input Information 2) Used in section 11.

{ Provide Statement 8) Used in section 11.

(Variable Declarations 3,7,8) Used in section 11.

Figure 24. Program Example ~ List of Sections

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

51

III.D Design

The test study was implemented during the Fall 1993 semester at Texas A&M
University. The test was performed while teaching all topics normally taught in the CS/1
course. The students were scheduled for 3 hours of lecture and 2 one-hour supervised labs
per week, for a duration of 15 weeks. The equipment used by each student was an IBM
486 33 MHz PC compatible with 4MB on a Novell network. The equipment, computer
labs, and classroom were also used by the regular CS/1 course.

The students used an editing environment called web-mode [45]. The environment is

based on GNU Emacs [10]. The following topics were taught during the course:

e problem solving techniques, including top-down design, divide and conquer, and
hierarchical development;

o the syntax of the Pascal programming language;
e use of the web-mode editing environment and the GNU Emacs editor;

e an introduction to the TEX formatting language and the WEB rules and constructs.

A pre-test was administered at the beginning of the course which was designed to evaluate
the students’ computing background and problem solving skills as they entered the course.
They were periodically tested throughout the semester on problem solving, Pascal,
web-mode, emacs, and WEB rules and constructs.

The majority of the classroom lecture was spent on problem solving and Pascal syntax,
similar to the manner in which the course is regularly taught. Each of the remaining
topics, which were specific to the test study, were covered with the use of reference cards.
Most of the information on web-mode, emacs, TEX, and WEB was conveyed during the lab
time with the use of handouts and examples. The time spent on any one part of the edit,

compile, link, and debug process was reduced because of the extra WEB steps.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

IILE Participants

The group of novice programmers selected for the study were those enrolled in the
honors section of the introductory computer science course (CPSC 110H) at Texas A&M
University. This group was selected for three reasons: class size, computing background of
the students, and the author was an experienced teacher of this course.

The honors class was a relatively small test group. The regular introductory course
has an average enrollment of 175 students, while the honors section typically has about 40
students enrolled. In general, tht; students enrolled in the introductory course (both
honors and regular) have a limited knowledge of personal computers and/or programming.
Typically, many of the beginning computer science students have had at least one
semester of a high school computer class. They arrive with some limited knowledge of
programming language syntax (primarily Pascal and/or BASIC). These students are still
considered novice programmers because they rarely have experience in data structures,
solving large problems, or programming teams.

There are several qualifications for participation in the honors program at Texas A&M
University [72]. New freshmen must graduate in the top 10% of their class and score
1150+ on the SAT or 28+ on the ACT. All other students must attain a cumulative GPR
of 3.50 or above at Texas A&M to enroll in honors courses. Students must maintain a 3.25

GPR to continue in the honors program.

III.LF Methods of Measurement

The results of the research were used to determine whether improvements in problem

solving and programming skills can be attributed to the use of literate programming. An

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

evaluation of the teaching methodology was made based on several factors:

1. Completion of a pre-test which was developed to indicate the students’ problem solving
ability and computing background as they entered the course.

2. Periodic tests which were designed to indicate the change in problem solving ability
and programming skills.

3. An evaluation of the programs and documentation produced and the consistency
between code and its corresponding documentation.

4. Completion of a post-test which indicates the students’ ability to solve problems and
write programs at the end of the test period.

5. An evaluation of the students’ performance in the subsequent Programming II course.

6. An evalvation of the students’ performance in the subsequent Data Structures course.

The results were expected to indicate an increase in problem solving ability over time.
Programmers who use the literate programming paradigm were expected to be more
problem-oriented rather than program-oriented.

Three methods for measuring the effect of literate programming on problem sclving

were considered. The methods are described as follows:

1. The experimental group consists of students enrolled in CPSC 110H and the control
group consists of students enrolled in CPSC 110.

2. The subject class (CPSC 110H) can be divided evenly into an experimental and control
group.

3. An “expert” can be used for the evaluation of the students performance based on past
and present performance of honors and non-honors students.

III.F.1 Method 1: CPSC 110H versus CPSC 110

This method employs the CPSC 110H class as the experimental group and the regular
CPSC 110 class as the control group. An evaluation of the experiment would be based on
the results of similar assignments given and similar tests administered throughout the

semester.

The advantages of this method are as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

e both groups use the same textbook;
e the study utilizes an experimental and a control group; and

o the classes are taught during the same semester.

The disadvantages of this method are as follows:

o there is a difference in the quality of the students (honors versus non-honors);
e different instructors teach the two courses; and

e there is a difference in class size (1754 versus 35+).

It was decided that this would not be a feasible method of measurement, primarily due to

the difference in instructor, class size, and the quality of the students.

IILF.2 Method 2: Dividing the CPSC 110H Section

This method divides the CPSC 110H class into an experimental and a control group
based on the particular lab section. An evaluation of the experiment would be based on
the results of similar assignments given and similar tests administered throughout the
semester.

The advantages of this method are as follows:

o the test study utilizes an experimental and a control group;

the classes are taught during the same semester;

one instructor teaches the course;

both groups are honors students;

o class size is not a factor; and

both groups use the same textbook.
The disadvantages of this method are as follows:

o the development environment is sometimes discussed in lecture; thus both
environments must be discussed during the same lecture;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

o the students will discuss their respective environments and will determine there is a
difference, which may affect the results; and

o if the environment is not discussed in lecture, lab time must be spent lecturing.

This would have been the preferred method but was not possible due to facilities and
resources necessary to support this format. Also, a mechanism to ensure the two groups

were created evenly is too costly and nearly impossible.

III.F.3 Method 3: CPSC 110H versus Previous CPSC 110/CPSC 110H

This method utilizes the CPSC 110H class in the experiment and relies on statistics
and the author’s “expert” opinion for the evaluation. An evaluation of the experiment was
based on assignments given and tests administered throughout the semester by the
author, past performance of honors and non-honors students, and performance of honors
and non-honors students in the subsequent Programming II course.

The advantages of this method are as follows:

e the author has been the primary instructor for the CS/1 course at Texas A&M
University for approximately 3 years;
*

¢ the author taught CPSC 110H at Texas A&M University during the Fall 1990
semester, therefore it may be used as a control group;

o differences in instructor, quality of student, class size, and textbook are not a factor;

e class lecture time may be spent discussing the development environment, leaving lab
time for development work; and

o the author has access to the final exam results for CPSC 110H during the Fall 1992
semester, as well as results for the non-honors classes for previous semesters.
The disadvantages of this method are as follows:

o the classes may not have used the same textbook;

e the comparison groups were not taught during the same time frame as the
experimental group;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

o comprehensive records for the comparison groups may not be available;
o the results of the evaluation rely on the author’s expert opinion; and

o the author may be biased.

III.F.4 Discussion

Method 3 was selected to be used due to the lack of resources and facilities. Rather
than attempt to implement a controlled experiment, a quasi-experimental approach was
utilized, from which it is possible to draw reliable inferences {20, 42]. The research
resembles an experiment, but lacks the controls of experimental research, such as a control
group [42].

After conducting the experiment, an extension to the evaluation procedure was made.
The CS/2 course is primarily a programming language course in which students are
taught C syntax. Therefore, it was decided that in order to evaluate problem solving skills,

an evaluation of the Data Structures course might prove more beneficial.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

CHAPTER IV

IMPLEMENTATION OF A TEST STUDY

The test was performed during the Fall 1993 semester and the participants were those
students enrolled in the honors section of the CS/1 course. The course differed from other
CS/1 courses only in the sense that the WEB style of literate programming was utilized in
an attempt to enhance problem solving skills. All of the topics normally covered in the
CS/1 course were presented to the test group.

Many of the students had preconceived ideas about the course being explicitly “a
Tuarbo Pascal class.” Therefore, it was necessary to explain that a different environment
was to be used. Several students then perceived themselves as being “guinea pigs” for this
new development environment. However, at no time were the students told they were
participating in an experiment.

The focus of the semester was on problem solving. The students were taught Pascal
syntax, but the emphasis was on problem solving using the WEB style of programming. A
portion of the class was spent on learning (and evaluating) problem solving skills for the
design and development of programs. One method by which problem solving was taught
was by example. The students were given several examples of how to design solutions to a
problem. This technique of problem solving with examples was used throughout the
semester as the difficulty of the. problems increased.

An important part of learning probiem solving was to practice iteration in the design

of a solution. An iteration of the students’ problem solution was evaluated by the teaching

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

assistant. The students received feedback regarding their iterative process, such as
whether they were approaching the details of the problem at an acceptable level and
whether they were considering all aspects of the problem.

The final measurement in the design and development phase was made upon
completion of the program assignment. Each program was examined and an evaluation
made as to the correctness of the solution, the consistency of documentation and code,
and the quality of the documentation. The intent was to determine if the documentation

portion of a section was, in fact, an explanation of the code.

IV.A Test Study

This section is a detailed discussion about the test study. Tests and problems will be
described. The method by which the students were graded is presented, as well as a
description of what was expected from each of the labs. The course materials, including

tests, labs, and grading guidelines for the labs are included in Appendix A.

IV.A.1 Course Materials

The required textbook for the course was Pascal: Understanding I"rogramming and
Problem Solving, Third Edition by Douglas Nance. The same textbook was used in the
regular CS/1 course. The text had also been used in the course for the previous two
semesters. The textbook provides information on Pascal syntax, problem solving using
top-down design, and the Turbo Pascal system.

The test study participants were required to use the GNU Emacs editor, rather than
the editor provided with Turbo Pascal. They were given a GNU Emacs Reference Card

and were shown how to access the emacs tutorial. The reference card also includes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

information on navigating in web-mode (pages 114-115).

The information on TFX and WEB was conveyed primarily by example. The
participants were given an excerpt from the WEB user manual which contains a brief
description on how to write programs in the WEB language (pages 116-120). They were

also given several handouts to illustrate various TgX features (pages 131-139).

IV.A.2 Lab Assignments

The students received six programming assignments throughout the course of the
semester. The quantity and degree of difficulty of each assignment was comparable to
those given in the previous CS/1 courses. Each assignment, except the first and the last,
was graded based on the initial design and the final lab. The first lab assignment was
designed merely to have the students use emacs and the web-mode environment. The last
assignment was graded on design and execution; however, the students were not required
to turn in an initial design, as the problem was merely a different implementation of a
previous problem.

In previous semesters, students were taught problem solving and were strongly
encouraged to prepare an initial design for their programs. In a few instances, they were
asked to turn in their design, which was usually submitted in handwritten form. The
students were also asked to document their programs and write well-styled programs. The
documentation typically took the form of explaining the purpose of a procedure or a
function.

The test study participants were required to turn in an initial design and were
required to use this design as the starting basis for their program development. There was

no predefined format to which the design had to conform. The only rule was that each of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

the following topics be addressed:

e problem statement;
o inputs required;
e outputs generated;

e processing required;

algorithm; and

testing.

It should be noted that this same list was given as a guide for design in the CS/1 course in
each of the previous semesters.

The test study participants were also given the requirement that they document their
programs. Each student received feedback on their initial design and, if necessary,
modified the design. Their documentation included the design requirements and provided
more information on what a particular step was accomplishing, rather than addressing the

purpose of a procedure or a function.

IV.A.3 Exams

The students were required to take three in-class exams and a comprehensive final
exam. The quantity and degree of difficulty of each exam was comparable to those given
in the previous CS/1 courses. Each exam, including the final, contained a question which
was designed to test the students’ problem solving ability. This was done in an attempt to
measure the participants’ prpblem solving ability over time. The questions increased in
complexity over the course of the semester. The exams also tested the students’
knowledge of Pascal syntax, emacs editor functions, features of the WEB language, and

woeb-mode functions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

The final exam was designed to test the subjects in the same manner in which
students had been tested in previous semesters. Exact or comparable questions were used
such that an unbiased comparison could be made. Again, the students were tested on
their knowledge of Pascal syntax, editing facilities, and their problem solving ability. The
results of the test study, including performance on labs and exams, are discussed in detail

in the next chapter.

IV.B Teaching Assistant

The performance of the students could also be affected by the teaching assistant

assigned to the course. The duties of the teaching assistant included the following:

o assisting the students during the scheduled lab time and during scheduled office hours;
¢ grading and providing feedback on the initial design for each Iab assignment;
o grading the final design and program for each lab assignment; and

s providing instruction on WEB, TEX, and Pascal, when necessary.

The teaching assistant was not familiar with literate programming prior to the test
study. However, he practiced literate programming techniques during the course in order
to provide assistance to the students.

The grading policy adhered to by the teaching assistant was not dictated by the
instructor, but was agreed upon by both the instructor and the teaching assistant. The
grading practices were strict, due to the nature of the study and the personality of the
teaching assistant. However, it is believed that the teaching assistant was fair, objective,
and comparable to the other teaching assistants the author has directed in previous

honors courses in his evaluation of the lab assignments.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

CHAPTER V

RESULTS

The honors computer science introductory course for the Fall 1993 semester was
selected as the subject class for the test study. The performance of the students enrolled

in this particular class was compared with the following groups of students:

e the honors computer science introductory course (CPSC 110H) for the Fall 1990
semester; and

e the honors computer science introductory course (CPSC 110H) for the Fall 1992
semester.

This chapter contains a detailed discussion of each of the groups. A comparison was
made between the performance of the test study participants and the students enrolled in

the other classes.

V.A Background/Experience of Test Study Participants

Thirty-eight students enrolled in the honors class during the Fall 1993 semester. The
administration of a pre-test provided information regarding the general background and
experience of the participants. The purpose of the pre-test was to establish that these
were, in fact, novice programmers. The results of the problem solving portion of the test
provided a basis for measuring the initial problem solving skills of the participants.

The students entered the course with a variety of backgrounds in computer science.
Ouly one student had never taken a computer science course and one student had taken

only a computer literacy/computer history course. Few of the students had any

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

background in computer science at the college level. Table 1 is a summary of the college

level experience of the participants.

Table 1. Unusual or Exceptional Computer Experience of Subjects

Count | Exceptional Experience
1 C course at a Junior College
4 University level Fortran course

The majority of the students had some type of computer science class in high school.
Table 2 is a summary of the high school experience of the participants. Although there
were thirty-eight students enrolled in the class, many of the students had experience in

more than one of the areas listed.

Table 2. High School Computer Experience of Subjects

Count | Computer Experience

8 Microcomputer applications, typically including DOS, WordPerfect,
Lotus 1-2-3, and/or dBase
8 Computer Math, which may or may not include some experience in
BASIC and/or Pascal
12 | BASIC course
21 | One or more semesters of Pascal

Despite the appearance of having a significant background in computers, these
students must still be considered novice programmers. Although a significant number had
some background in Pascal programming, fifteen felt they could program without the use
of a reference manual. Even so, their knowledge of advanced Pascal constructs cannot be
considered to be comprehensive. None of the students had experience as a professional
programmer,

One student had limited experience with the emacs editor. The remaining thirty-seven

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

had no experience with emacs. None of the students had heard of WEB programming;
therefore, none of the test study participants had previous experience with literate
programming.

The pre-test included a question designed to provide some measurement of the
students’ initial problem solving ability. The students were asked to state the steps
necessary to solve a given problem. They were instructed to give detailed answers in

complete English sentences and paragraphs. The problem was stated as follows:

You are the manager of Aggie Lawn Service. Alvin is your new employee. You
must explain to Alvin the process of calculating an estimate for a potential
customer. (Of course, in the future this may use a hand-held computer.) The
quote will include a cost statement and estimated time to complete the job.

This estimate is based upon the area of the lawn and a standard (confidential)
charge per square foot. Grass can be cut at the rate of 2 square feet per second.
You may assume that a rectangular house is situated in a rectangular yard. Give
the details of the process and itemize all assumptions you have made.

It is difficult to measure a person’s problem solving ability. For example, it is easily
seen that the problem is a basic input-process-output problem. Each subject received
points if the necessary inputs and the required outputs were described. In terms of the
processing, many students felt it was sufficient to merely give the formula for the area of a
rectangle. They then subtracted the area of the house from the area of the lawn
(sometimes shown, again, as a formula).

In general, most of the students were able to give an answer which solved the problem.

However, several exceptions were noted as follows:

e some participants simply gave the necessary formula(s), omitting any description of
the inputs and/or outputs;

e some participants failed to describe their solution using complete English sentences
and paragraphs;

o some participants described the necessary inputs and the required processing, but
failed to produce a result; and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

e some participants made and described additional assumptions or expressed a need
for additional information regarding items such as driveways, sidewalks, trees, flower
beds, etc.

The students’ solutions were scored based on their ability to solve the problem.
Table 3 is a summary of the minimal set of problem solving issues that should have been

addressed or noted, with their associated point value.

Table 3. Problem Solving Issues

Points | Problem Solving Issue

Obtain dimensions of yard

Obtain dimensions of house

Calculate area for house and yard
Calculate area for lawn to be cut
Calculate total cost to cut the lawn
Calculate the time for completion
Convert the time to minutes or hours
Produce the final cost for cutting lawn
Produce the time for completion

()

B DD DD QWD NN

A final score of twenty indicates that the student adequately described the required
inputs, calculations, and necessary cutputs. A student lost points for omitting information
or not describing the process in sentence form. A student could earn extra points by
addressing issues that were not explicitly mentioned, but might be a factor in solving the
problem.

Table 4 is a summary of the results of measuring the students’ initial problem solving
ability. There are 47.4% above and only 31.6% below average. The grade of “C” is
described as average, yet it is rare that a class will have as many D’s and F’s as A’s and
B’s. The distribution of the data in Table 4 is consistent with grade distributions for the

CS/1 course over the last few years.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

Table 4. Initial Problem Solving Ability

Percent of
Students | Problem Solving Ability
31.6 Excellent (18+ points)
15.8 Above average (16-17 points)
21.1 Average (14-15 points)
13.2 Below averzge {12-13 points)
18.4 Poor (below 12 points)

V.B CS/1 Class Information

The CS/1 course is open to students of all majors in the university. A particular CS/1
class may be distinguished by the semester it is taught, the instructor, the quality of
students, the textbook used, and the size of the class. Every attempt was made to address
each of these issues and to minimize the side effects of each issue.

The class selected for the test study was taught by the same instructor that taught one
of the comparison groups. The other comparison group was taught by a different
instructor. Each instructor covered the same material regarding programming and
problem solving in the comparison class.

The textbook selected for the CS/1 course normally changes every 1-2 years. An
attempt is made to select the textbook which best presents problem solving techniques
and Pascal syntax. The textbook used for the Fall 1990 semester was Turbo Pascal
4.0/5.0 by Walter Savitch. The textbook for the Fall 1992 semester was Pascal:
Understanding Programming and Problem Solving, Second Alternate Edition by Douglas
Nance. The test study participants were taught using Nance’s Third Edition of the Pascal
text. The textbooks are all similar enough that differences attributed to the use of

different texts are considered insignificant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

V.C Student Classification Distribution

The following is an analysis of the classification of students for each of the CS/1
classes. These distributions can be considered typical for the CS/1 course at Texas A&M
University.

Each of the subsequent tables could be presented in the form of counts or percentages.
The tables presented in this chapter are those deemed most informative. Each table is
presented in Appendix B in the alternative form.

Table 5 is a summary of the student classification distribution for the CS/1 course for
the subject and comparison classes (in percent form). The Ul classification indicates the
student is a freshman, U2 indicates sophmore, U3 indicates junior, and U4 indicates
senior. A chi-square test of independence was conducted to determine if the classiﬁcation
and semester variables are related (or dependent). The critical value of X2 for a = 0.10
and degrees of freedom = 6 is 10.64. The computed value, 10.96, exceeds 10.64, so we
conclude that the two variables are dependent. That is, the proportion of students of a
particular classification varies depending on the semester.

The honors classes typically have a large percentage of freshmen and sophmores. One
reason for this is that freshman computer science majors usually enroll in CS/1 their first
semester. The remaining students may be honors students in other departments that are
taking the course to satisfy their computer requirement.

Table 6 is a summary of the student major distribution for the CS/1 course for the
subject and comparison classes (in percent form). The honors classes typically have a
large number of computer science (CPSC) and computer engineering (CSEN) majors. A

chi-square test of independence was conducted to determine if the major and semester

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

Table 5. Student Distribution by Classification (Percent)

Semester | Ul | U2 | U3 | U4
Fall 90-H | 778 { 16.7 | 2.8 | 2.8
Fall 92-H | 69.0 { 16.7 | 14.3 | 0.0
Fall 93-H | 68.4129.0¢ 0.0 | 2.6

variables are related (or dependent). The critical value of X? for & = 0.10 and degrees of
freedom = 2 is 4.605. The computed value, 3.972, does not exceed 4.605, so we conclude
that the two variables are not dependent. That is, the proportion of students of a

particular major does not vary depending on the semester.

Table 6. Student Distribution by Major (Percent)

Semester | CPSC/CSEN | Other
Fall 90-H 55.6 44.4
Fall 92-H 59.5 40.5
Fall 93-H 76.3 23.7

V.D Problem Solving Performance

One of the primary motivations for conducting the study was to determine if the use of
the literate program paradigm leads to improved problem solving skills. Traditionally,
instruction in the introductory courses emphasizes the product of design (programs), but
not the design process itself [35]. This emphasis is reinforced because teachers place a
grade on the running program and not the process that produced it. Grades are assigned
based on the success (or failure) of the program, given certain test cases, and not on the
design of the program [35).

The introductory course at Texas A&M University can be considered typical and, in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

the past, has been taught using this same grading mechanism. A portion of the grade has
been assigned based on the program documentation, and the remainder of the grade has
been determined based on if the program ran with selected test cases. For this reason,
there are no comparison figures available for validating the test group’s problem solving
skills. However, the problem solving skills of the test group were measured periodically

during the semester and it can be determined if these skills improved.

V.D.1 Problem Solving Performance of the Test Group

The actual scores received by the test group on the problem solving portion of each lab
are included in Appendix C. The mean and the standard deviation of the scores for the

problem solving portion of each lab are shown in Table 7 and Table 8.

Table 7. Mean Problem Solving Scores — Labs (Percent)

Lab | Overall | Majors | Non-Majors
Lab2 | 83.1 80.6 91.3
Lab 3| 83.6 81.9 89.8
Lab4 | 884 87.5 91.3
Lab5| 89.8 88.3 94.8

Table 8. Standard Deviation of Problem Solving Scores — Labs (Percent)

Lab | Overall | Majors | Non-Majors
Lab2 | 169 18.5 4.2
Lab 3| 17.0 18.5 7.2
Lab4 | 105 114 5.9
Lab 5 | 10.7 11.6 4.1

The problem solving skills for the test group (as well as the difficulty of the problems)

increased over the course of the semester. This increase in problem solving skills was

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

experienced by both computer science majors and non-majors.

Notice that the non-computer science majors consistently scored higher on program
design than the computer science majors. This may be attributable to the fact that many
of the computer science majors had some experience in Pascal prior to the class. This
experience may affect the students’ problem solving skills for two reasons. Firstly, as
stated earlier, it is sometimes difficult to change the way a person has learned to perform
a particular task. Secondly, this previous programming skill may have detracted from
their ability to separate problem solving from programming.

The actual scores received by the test group on the problem solving portion of each
test are included in Appendix D. The mean and standard deviation of the scores for the

problem solving portion of each test are shown in Table 9 and Table 10.

Table 9. Mean Problem Solving Scores ~ Tests (Percent)

Test Overall { Majors | Non-Majors
Pre-Test 72.6 74.0 68.3
Test 1 78.8 79.7 76.1
Test 2 66.6 65.7 71.6
Test 3 80.9 80.3 82.7
Post-Test | 76.6 76.2 77.8

Table 10. Standard Deviation of Problem Solving Scores — Tests (Percent)

Test Qverall | Majors | Non-Majors
Pre-Test 0.25 0.27 0.15
Test 1 0.12 0.12 0.11
Test 2 0.18 0.20 0.12
Test 3 0.15 0.16 0.10
Post-Test | 0.24 0.24 0.25

It is difficult to determine whether or not the problem solving skills for the test group

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

increased over the course of the semester. The class, as a whole, experienced a decrease in
scores on the second test, although there was a greater decrease for computer science
majors. This decrease in scores for the second test may be attributed to the fact that the
problem for that test was significantly different and more difficult than any of the
problems encountered previously during the lab or on a test. The scores also decreased on
the post-test, or final exam, as compared to the third test; however, they still improved as
compared to the scores on the pre-test.

The problem solving scores, as a whole, were higher on the labs than they were for the
exams. This was to be expected since the problem solving portion of the lab was not
developed under stressful situations, as in the test-taking scenario. Another reason for
having higher scores in the lab is that measuring problem solving skills is not something
we are used to doing on a test. It is much easier to evaluate someone’s problem solving
skills developed through iteration during lab than it is to evaluate one-time problem

solving skills on a test.

V.E Programming Performance

Another motivation for conducting the study was to determine if the literate
programming paradigm can improve program quality as a result of improved problem
solving. Program quality, however, is difficult to define without studying maintenance of

code over a period of several years.

V.E.1 Programming Specifications for the Comparison Groups

The programs for the Fall 1990 honors CS/1 comparison group were graded based on

program style, or documentation, and program execution, or “correctness.” For grading

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

purposes, 40% of the grade was based on style, with the remaining 60% of the grade based
on execution.
Program style refers to how well the programs were documented. Two levels of

documentation were defined;

¢ program/module level - where the programmer gives a general description of the intent
of the program and/or module. Some modules implement rather complex algorithms,
8o their descriptions are more detailed than the others. Other modules might make
important assumptions that should be mentioned.

o code level - where the programmer explains what the program is doing at a particular
moment in time.
Style includes the use of meaningful names for identifiers, indentation and white space for
program readability, and limited use of global variables. All of the above can be combined
to create a well-styled program.

The first program assignment was a Pascal source code listing that the students
entered using the Turbo Pascal editor. The program was then compiled, debugged (if
necessary), and executed. The program was designed as a learning exercise for the edit,
compile, test, and debug process.

The remaining programs were assigned in problem specification form. The students
were given a problem to solve using specific constructs, such as if-then-else, while-do,
and case. They were also told to use certain types of subprograms, parameter passing, file
manipulation, and data structures.

There is no data on programs for the Fall 1992 honors comparison group. This is due

to the fact that it was taught by a different. instructor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

V.E.2 Programming Specifications for the Test Group

The progi'am grading guidelines for the test group are included in Appendix A. The
programs were graded based on program design, documentation, and program execution,
or “correctness.” For grading purposes, 50% of the grade was based on documentation
and design, with the remaining 50% of the grade based on execution.

Program documentation and design addressed the design issues, such as problem
statement, required inputs, outputs generated, processing required, algorithm
development, and testing. Included in the grade was the degree of consistency between the
documentation and the implementation. The two levels of documentation defined
previously (program/module and code), and the specifications for a well-styled program
were also included in the documentation and design portion of the grade.

The first program assignment was a WEB source code listing that the students entered
using the emacs editor. The program was then WEAVEd and TFXed to produce a
device-independent file which was then converted by a printer driver to produce a
hardcopy listing of the program. The program was also TANGLEd, compiled, debugged (if
necessary), and executed. The program was designed as a learning exercise for the edit,
WEAVE, TgX, dvips, TANGLE, compile, test, and debug process.

Like the comparison groups, the remaining programs were assigned in problem
specification form. The students were given a problem to solve and part of the process was
to extract (from the instructor and/or the teaching assistant) the necessary information
for solving the problem. Specific constructs, such as if-then-else, while~do, and case,
were used for the assignments. Like the comparison groups, they were told to use certain

types of subprograms, parameter passing, file manipulation, and data structures.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

V.E.3 Programming Performance of Test Group versus Comparison Groups

The actual scores received by the test and comparison groups on each lab are included
in Appendix C. The mean and standard deviation of the scores for each lab are shown in

Table 11 and Table 12.

Table 11. Mean Program Scores

Semester | Lab1 |Lab2 | Lab3 | Lab4 | Lab5 | Lab6 | Lab 7
Fall 90-H | 99.0 | 99.2 | 94.2 | 92.0 | 94.1 | 90.0 | 90.5
Fall93-H | 89.8 | 858 | 87.8 | 779 | 766 | 75.7 | N/A

Table 12. Standard Deviation of Program Scores

Semester | Lab1 | Lab2 | Lab 3| Lab4 | Lab5 | Lab 6 | Lab 7
Fall 90-H | 3.16 | 2.06 | 6.66 | 844 | 4.72 | 9.92 | 14.91
Fall 93-H | 14.75 | 22.29 | 22.99 | 23.67 | 32.45 | 34.71 | N/A

Notice the scores received by the test group are much lower than those received by the
comparison group and the standard deviation is much higher.

The primary reason for the test group receiving lower program scores than the
comparison group is due to the grading mechanism used for the test study. The programs
were graded using more strict guidelines and high quality design was expected of the
students.

There may be several reasons for experiencing lower program scores using this

program development methodology:

1. The students experienced trouble comprehending the steps necessary for processing
a WEB program; however, the degree of difficulty should be reduced over a period of
extended use.

2. The programs themselves were not more difficult; however, the difficulty of the
program may have been emphasized because less information about solving the
problem was given to the students.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

3. The debugging facility which is available in Turbo Pascal was not an option for the
students, thus the debugging task was more difficult and the debugging time was
increased.

4. Several students submitted programs that did not run in order to receive credit for
the design, thus lowering the average.

Although it appears the test study group did not perform as well on the programming
assignments as the comparison groups, this is not necessarily the case. Several of the
students in the test study group could not fully grasp the concept problem solving with
the use of WEB programming. However, the majority of the students performed well.

The quality of the programs, including documentation, was much higher for the test
study group. Their program documentation contained of all of the necessary design steps,
including design rationale and testing. The documentation produced by the comparison
groups typically included only items such as identifier descriptions and the purpose of the
subprograms. The higher quality of the documentation produced by the test study

participants is certainly not reflected in the grades.

V.F Exam Performance

One of the methods by which the students were measured and compared was with the
use of in-class exams. The purpose of the exams was to measure problem solving ability

and knowledge of Pascal syntax.

V.F.1 Exam Structure for the Comparison Groups

The exam structure for the comparison groups was tailored more towards measuring
knowledge of Pascal syntax and programming. The questions on the exams for the honors

CS/1 classes were designed to test the students’ Pascal knowledge and their ability to use

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

specific constructs rather than their problem solving ability.

The final exam for the Fall 1990 honors class consisted of 69 true/false and multiple
choice questions about Pascal syntax and concepts. The remaining questions tested the
students’ ability to write Pascal programs. The final exam for the Fall 1992 honors class
consisted of questions which tested the students’ ability to write portions of programs
(Pascal syntax) and implement specific data structures. Although the ability to write
programs involves using some type of problem solving ability, the students in the

comparison groups were not specifically tested on their problem solving ability.

V.F.2 Exam Structure for the Test Group

The exams for the test study group were designed to test the students’ knowledge of
Pascal as well as their problem solving ability. Approximately 25% of each exam tested
problem solving skills. The remaining 75% of each exam tested the students’ knowledge of
Pascal concepts and their programming ability much in the same way the comparison
groups were tested. The exams for the test group, including the pre-test and tke final, are
included on pages 112-113 and 146-188 in Appendix A.

The final exam for the test study participants was designed such that specific
comparisons could be made between the test study group and the comparison groups.
This was accomplished by using, where possible, the same (or similar) questions on the

exam to test knowledge of Pascal syntax.

V.F.3 Exam Performance of Test Group versus Comparison Groups

The actual scores received by the test and comparison groups on each exam are

included in Appendix C. The mean and standard deviation of the scores for each exam are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

shown in Table 13 and Table 14.

Table 13. Mean Exam Scores

Semester | Exam 1 | Exam 2 | Exam 3 | Final Exam | Pascal Concepts
Fall 90-H | 83.1 T 70.6 74.4 74.4
Fall 92-H | N/A N/A N/A 73.5 N/A
Fall 93-H | 78.6 74.7 75.4 75.0 77.3

Table 14. Standard Deviation of Exam Scores

Semester | Exam 1 | Exam 2 { Exam 3 | Final Exam | Pascal Concepts
Fall 90-H | 11.06 12.26 11.53 10.81 9.11
Fall 92-H | N/A N/A N/A 15.75 N/A
Fall 93-H | 10.23 1231 | .13.35 12.21 12.27

The Mann-Whitney U-test (also known as the Wilcoxan Rank Sum Test) can be used
to determine if there is a significant difference between the exam performance of the test
study group and the exam performance of the comparison classes. The Mann-Whitney
U-test is a statistical test used to determine if there is a statistically significant difference
between the performance of two independent groups (11, 16, 47]. This test is similar to the
t-test and makes three assumptions:

1. Both samples are random samples from their respective populations.

2. In addition toindependence within each sample, there is mutual independence between
the two samples.

3. The measurement scale is at least ordinal.

If both sample sizes are 10 or larger (as is the case here), the sampling distribution of
T is approximately normal, which allows us to use a z statistic.
The Mann-Whitney U-test was conducted to determine if there was a significant

difference between the exam performan of the test study group and that of the Fall 1990

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

comparison class. The critical value of 2z for a = 0.10 is 1.282. The computed value,
0.04708, does not exceed 1.282, so we conclude that the distributions of grades on the final
exam for the two groups are not significantly different.

We can use the same test to compare the Fall 1992 honors comparison group with the
test study group. The computed value, 0.1244, does not exceed 1.282, so again we
conclude that the distributions of grades on the final exam for the two groups are not
significantly different.

Each of the final exams are equivalent in nature and level of difficulty. Each final exam
also contained questions designed specifically to test the students’ knowledge of Paseal
concepts and syntax. The test study group scored higher thap both of the comparison
groups when tested on their knowledge of Pascal. Therefore it can be concluded that the
teaching methodology has no detrimental effect on the students’ ability to perform well on

exams testing both Pascal knowledge and problem solving ability.

V.G Course Performance

Another method by which the students were measured and compared was their overall
performance in the CS/1 course as determined by their final grade. The actual figures for
the grade distribution tables in this section are included in Appendix B. The percentages
below include only those students that completed the course. The grade classification of
Other (which is not included in the calculations below) are those of Q (dropped before the
semester deadline), WP (withdrew passing), WF (withdrew failing), NG (no grade for the

course), S (satisfactorily passed), and U (unsatisfactory).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

V.G.1 Course Performance of Test Group versus Comparison Groups

Table 15 is a summary of the overall grade distribution for students completing the

CS/1 course for the subject and comparison classes (in percent form).

Table 15. Overall Grade Distribution (Percent)

Semester | A B C|D]|F
Fall 90-H | 20.6 | 50.0 | 14.7 | 5.9 | 8.8
Fall 92-H | 51.3 | 20.5 | 20.5 | 2.6 | 5.1
Fall 93-H | 24.3 | 40.5 [21.6 | 54 | 8.1

The percentage of students that passed the CS/1 course was similar for each of the
classes. A grade of “A”, “B”, or “C” is considered passing. The Fall 1990 and the Fall
1992 comparison groups had 85.3% and 92.3% of the students, respectively, pass the
course. The test group had 86.4% of the students pass the course.

Table 16 is a summary of the grade distribution for computer science majors

completing the CS/1 course for the subject and comparison classes (in percent form).

Table 16. Grade Distribution for CPSC/CSEN Majors (Percent)

Semester | A B C|D]| F

Fall 90-H | 20.0 | 55.0 | 10.0 | 5.0 | 10.0
Fall 92-H | 50.0 | 16.7 | 20.8 | 4.2 | 8.3
Fall 93-H [28.6 | 32.1 | 250 | 7.1 | 7.1

The percentage of computer science students that passed the CS/1 course was
comparable for the test study group and each of the comparison groups. The Fall 1990
and the Fall 1992 comparison groups had 85.0% and 87.5% of the computer science

students, respectively, pass the course. The test group had 85.7% of the computer science

students pass the course.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

Table 17 is a summary of the grade distribution for non-computer science majors

completing the CS/1 course for the subject and comparison classes (in percent form).

Table 17. Grade Distribution for Other Majors (Percent)

o

Semester { A B C|D F

Fall 90-H | 21.4 | 429121471 71
Fall 92-H | 53.3 | 26.7 { 20.0 | 0.0 | 0.0
Fall 93-H | 11.1 | 66.7 | 11.1] 0.0 | 11.1

The percentage of non-majors that passed the CS/1 course was 100.0% for the Fall
1992 comparison group. The percentage of non-majors that passed the CS/1 course in the
test study group was 88.9%, while the Fall 1990 comparison group had 85.7% pass the
course.

Figure 25 shows the percentage grade distribution for each of the CS/1 classes. Notice
that the grade distribution for the Fall 1992 comparison group is much different from the
distributions for the Fall 1990 comparison group and the Fall 1993 test group. This

difference in distributions is largely attributable to the difference in instructors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

601

50F

40

201

% class with grade

1

10

. o Fall 1990

+ Fall 1993

- ®

o~ 0 o Fall 1992
[
F

Figure 25. CS/1 Course Grade Distribution

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

V.H CPSC 120 Performance

Another method by which the students were measured and compared was their overall
performance in the CS/2 course as determined by their final grade. The actual scores
received by the test and comparison groups in the CS/2 course are included in
Appendix C. The calculations given include only those students that completed the CS/2

course.

V.H.1 Subsequent Course Performance of Test Group versus Comparison

Groups

Approximately 65-70% of the honors CS/1 students enrolled in the CS/2 course (73.5%
of the Fall 1990 class, 66.7% of the Fall 1992 class, and 67.6% of the Fall 1993 class).
Table 18 is a summary of the overall grade distribution for the subsequent CS/2 course

for those students in the subject and comparison classes in percent form.

Table 18. Overall CS/2 Grade Distribution (Percent)

Semester | A B C|D|F
Fall 90-H | 68.0 | 28.0 | 4.0 [0.0 | 0.0
Fall 92-H | 73.1 | 19.2 | 7.7 [0.0 | 0.0
Fall 93-H | 52.0 | 40.0 | 4.0 | 0.0 | 4.0

At first glance it appears that the students in the Fall 1990 honors and the Fall 1992
comparison classes performed much better than the students in the test study group in
the CS/2 class. Both of the comparison groups had a higher percentage of students make
“A”s in the subsequent course. However, all of the classes had over 90% of the students
make an “A” or a “B” in the course.

Figure 26 shows the percentage grade distribution for each of the CS/2 classes. Notice

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

that there is no significant difference in the grade distributions for the test study group

and both of the comparison groups.

[e]
70F .
. 60F
©
[44]
& S0t
<
T 40r
h 30f
(1]
°
N e Fall 1990
10+ o Fall 1992
e « Fall 1993
0 o
F

Figure 26. CS/2 Course Grade Distribution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

Table 19 is a comparison of the average grades in the CS/1 class and the subsequent
CS/2 class for those students in the subject and comparison classes. The grade point
shown is out of a total possible grade of 4.0. The Mann-Whitney U-test was used to
conclude that there is not a significant difference in average grade point ratio for any of

the groups.

Table 19. Average Grade for CS/1 and CS/2 Courses

Semester | CS/1 [CS/2
Fall 90-H | 2.676 | 3.640
Fall 92-H | 3.103 | 3.654
Fall 93-H | 2.676 | 3.360

This may still not be a good representation of how the students in the subject and
comparison classes performed in the subsequent course. These grades can be evaluated in
terms of the particular section and semester the class was taken and the instructor that
taught the class.

Table 20 is a summary of the average difference in grades between the subject class,
the comparison classes, and the other CS/2 classes. This summary is itemized by section,
instructor, and semester. -

The actual figures for the grade distribution for each of the CS/2 classes are included

in Appendix E.

Table 20. Average Difference in Grade for CS/2 Classes

Semester | Diff. in Section | Diff. in Instructor | Diff. in Semester
Fall 90-H +0.02 +0.01 +0.01
Fall 92-H +0.03 +0.01 +0.01
Fall 93-H +0.06 +40.05 +0.09

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

With these figures, it is shown that the students in the CS/1 comparison classes scored
somewhat higher than their peers in the same section of the CS/2 course. However, those
students in the CS/1 test group scored even higher than their peers in the same sections
of the CS/2 course. This data was also analyzed including the CS/2 instructors and
semester. The same results held.

When the performance of the students in the test study group was compared with the
performance of their peers, it was determined that the students in the test study group
actually scored higher than the students in the comparison groups (and the other

students) in the CS/2 course.

V.I CPSC 210 Performance

The final method by which the students were measured and compared was their
overall performance in the Data Structures course as determined by their final grade. The
Data Structures course is the first course students take upon completion of the CS/1 and
CS/2 courses. At this point, the students are no longer learning programming languages.
Instead, they are using their programming and problem solving abilities in the “design of
algorithms for efficient implementation and manipulation of data structures” [72]. In other
words, this is the course where good problem solving skills take precedence over
programming ability.

The actual scores received by the test and comparison groups in the Data Structures
course are included in Appendix- C. The calculations below include only those students

that completed the Data Structures course.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

V.I.1 Data Structures Course Performance of Test Group versus Comparison

Groups

Approximately 45-55% of the honors CS/1 students enrolled in the Data Structures
course (55.9% of the Fall 1990 class, 56.4% of the Fall 1992 class, and 45.9% of the Fall
1993 class).

Table 21 is a summary of the overall grade distribution for the Data Structures course

for those students in the subject and comparison classes in percent form.

Table 21. Overall Data Structures Grade Distribution (Percent)

Semester | A B C|D{F
Fall 90-H | 21.1 | 63.2 | 15.8 | 0.0 | 0.0
Fall 92-H | 50.0 | 13.6 | 22.7 | 9.1 | 4.5
Fall 93-H | 52.9 | 35.3 | 11.8 | 0.0 | 0.0

Not only did the test study group have a larger percentage of students make an “A” in
the course, but a larger percentage of students made an “A” or a “B” in the course.

Figure 27 shows the percentage grade distribution for each of the Data Structures
classes. Notice that there is a significant difference in the grade distributions for the

groups.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

un (e ~!
o O o
T T T

% class with grade
BN
o

30}
20f e Fall 1990

\ o Fall 1992
10r N, o Fall 1993
0 1 l l _ho-cc-A

Figure 27. Data Structures Course Grade Distribution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

88

Table 22 is 2 comparison of the average grades in the CS/1 class, the CS/2 class, and
the Data Structures class for those students in the subject and comparison classes. Again,
the grade point shown is out of a total possible grade of 4.0. Using an unpaired t-test,
with a = 0.10, it was concluded that there is a significant difference in average grade for
the Data Structures course between the Fall 1993 test group and both the Fall 1990 and

the Fall 1992 comparison groups.

Table 22. Average Grade for CS/1, CS/2, and Data Structures Courses

Semester | CS/1| CS/2 | DS

Fall 90-H | 2.676 | 3.640 | 3.053
Fall 92-H | 3.103 | 3.654 | 2.955
Fall 93-H | 2.676 | 3.360 | 3.412

A chi-square test of independence was conducted to determine if the grade and CS/1
semester variables are related (or dependent). The critical value of X2 for @ = 0.10 and
degrees of freedom = 8 is 13.36. The computed value, 15.368, exceeds 13.36, so we
conclude that the two variables are dependent. That is, the proportion of students
receiving a particular grade varies depending on the semester in which they took CS/1.

Figure 28 shows the progression of average grades for the Fall 1993 test study group
and both the Fall 1990 and the Fall 1992 comparison groups. Notice that the test study
group demonstrates an upward progression in terms of average grade. Both of the
comparison groups increase in average grade from the CS/1 to the CS/2 course. However,

the average grade for both groups drops significantly in the Data Structures course.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.8
3.6F
(]
g
& 3.4f ¢
>
(3]
3
£ 3.2F
o
a ,
) *
)
o8l e Fall 1990
o fall 1992
o6 1 | ¢ Fall 1993

1
cS/1 CS/2 DS
course

Figure 28. Grade Progression

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

90

When the performance of the students in the test study group was compared with the
performance of their peers in a course which requires extensive problem solving skills, it
was determined there is a significant difference in the performance of the students in the

test study group compared with the performance of the students in the comparison groups.

V.J Student Evaluation of CPSC 110 Teaching Methodology

Upon nearing completion of the CS/1 course, the students were asked to submit a
paper reflecting their feelings and attitudes towards the WEB programming methodology. It
was stressed that statements made would in no way affect their grade in the course.

A graphic rating scale [44] was developed and the reports were evaluated in order to
appraise the students’ reactions to the WEB programming process. The scale consisted of
five categories, rated 1-5. In addition, the scale contained a “not discussed”, rated 0,
category. Three people evaluated the reaction of the test subjects. None of the people had
prior training in rating. The rating scale and reproductions of the student reports can be
found in Appendix F. Below is a summary of the results of the rating process. The “not
discussed” selections were not included in the calculations. The mean and the standard
deviation of the scores for each of the raters are shown in Table 23 and Table 24.
Kendall’s coefficient of concordance [44] was used to evaluate the raters. The result was a
value of 0.673, which indicates there was a modest level of agreement between the raters.

The first question required that the raters assess the students’ original reaction to
being told they were going to learn something called WEB programming. Although a few of
the students were enthusiastic about the idea, many were unhappy with the fact that they

were going to be using a different methodology.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

Table 23. Evaluation of Fall 1993 CPSC 110H Students’ Reactions

Question | Rater 1 | Rater 2 | Rater 3 | Overall
1 3.21 2.81 2.52 2.85
3.20 1.60 3.25 2.67
2.69 2.64 1.87 2.43
3.44 3.14 1.67 2.88
3.41 3.28 2.90 3.20
3.54 2.87 3.57 3.31

D OV W N

Table 24. Standard Deviation of Rating Scale

Question | Rater 1 | Rater 2 | Rater 3 | Overall
1 0.94 1.00 1.13 1.07
1.05 1.17 1.02 1.33
1.26 1.26 1.31 1.32
1.17 1.22 1.25 1.38
1.33 1.36 1.47 141
1.35 1.09 0.68 1.12

U W

Much of the unhappiness was due to the fact that many of the students entered the
course with prior expectations about what is taught in the class. The second question
required that the raters assess the students’ original expectation of the class. As shown by
the ratings, most students entered the course under the impression that CPSC 110H was a
course in Turbo Pascal, despite the course description.

The next three questions required that the raters assess the students’ reactions to the
GNU Emacs editor, TgX, and WEB programming. Many of the students objected to the
use of the emacs editor. This may be due to the fact that the user interface is not
extremely user-friendly, especially to the novice user. The students were required to use
predefined keystrokes, rather than pull-down menus.

Although a minimal amount of TEX knowledge is required, the students seemed to find

the language difficult. Although several examples were provided, with a variety of TEX

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

commands, they students did not seem to adapt well to the use of TEX. Despite the lack of
TEX knowledge, the students seemed to adapt to the WEB environment. The raters seemed
to believe the students’ reaction to the WEB programming process was a bit above average.
The lack of enthusiastic response may have been 'due to their overall difficulty in
understanding the WEB process and concepts. The last question required that the raters
assess the students’ overall understanding of the WEB process. In general, the students’
understanding was average to good. Many of the students continued to have difficulty
separating the concepts of editor, WEB files, TEX commands, etc. They seemed
overwhelmed with having to learn more than just the Pascal language using the Turbo
environment, despite the attempt to minimize the amount of material with the use of

reference cards.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

CHAPTER VI

SUMMARY, CONCLUSION, AND FUTURE WORK

VI.LA Summary

The cost of software development is a subject of concern for software researchers and
developers. The dominant portion of the lifetime cost of software is not in the
development, but in the maintenance of the software. Research in the area of improving
the quality of software documentation to reduce maintenance costs is increasing [49, 68].

Donald Knuth coined the phrase “literate programming” to refer to programs that are
meant to be read by human beings, as well as executed by a computer. His original intent
was that WEB programs be written and used by experienced programmers [28]). However,
with practice, even less experienced programmers have had success with writing WEB
programs [45, 62, 63).

A WEB consists of documentation, written in a formatting language, and program
statements, written in a programming language. The WEAVE process prepares a
combination of the documentation and the program to be read by humans. The TANGLE
process extracts the program statements and creates a source program file to be executed
by the computer.

The methods with which we teach programming and problem solving to our
introductory students is an important research topic. Linn and colleagues have done an
extensive amount of work using case studies and templates to teach programming. The

basic premise is that students should be taught how an expert uses knowledge about a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

previously solved problem in order to solve a new problem [34, 35, 37, 38, 58].

Soloway and colleagues have also performed research in the area of teaching novice
programmers how to solve problems. They have found that the students have trouble
“putting the pieces together” in order to solve the problem [64, 66, 69], rather than with
Pascal syntax and constructs,

This research involved the use of the literate programming paradigm in the
introductory computer science class in order to improve the software development process.
The methodology combines literate programming with the problem solving process to
capture, document, and emphasize the problem solving process.

The program development methodology was used in the introductory computer science
course at Texas A&M University. The students enrolled in the Fall 1993 honors class were
required to use the development environment, web-mode, to create WEB programs. The
lecture time was spent discussing problem solving techniques and the syntax of the Pascal
programming language. During the lab time, the students were required to use the editing
environment (web-mode), which is based on GNU Emacs. They also received an
introduction to the TEX formatting language and the WEB rules and constructs.

The students initially designed their problem solution using the WEB rules. They
received feedback on their design and, using their design and any suggested changes,
implemented their solution using the Pascal programming language.

The program development methodology was evaluated using several different measures:

1. The students were given a pre-test and were then tested periodically to evaluate their
problem solving skills,

2. The students were compared with past introductory computer science course students
to evaluate their performance on programming assignments, exams, and in the course.

3. The students were compared with past introductory computer science course students
to evaluate their performance in the subsequent CS/2 course.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

4. The students were compared with past introductory computer science course students
to evaluate their performance in the Data Structures course.

VI.B Conclusion

The Fall 1990 Honors CS/1 course was taught in a manner that differed somewhat
from the traditional CS/1 course. The students used an editor, a formatting system, and a
coding style that was new to all. The students’ performance in subsequent courses was not
hurt and may have been helped with the different methodology. Therefore, it can be
concluded that the use of literate programming in the introductory computer science class
was successful. The results of using the program development methodology in the CS/1
course indicate that the methodology is successful in teaching novice programmers good
problem solving skills.

These are the results of the experiment:

o The students showed an increase in their problem solving skills.

o Those students unfamiliar with the Pascal programming language, or any other
programming language, were more successful then those familiar with Pascal at using
the literate programming paradigm to capture and document their problem solving
process.

¢ The students were able to learn the WEB rules, the web-mode environment, GNU
Emacs, and TgX rules, as well as the Pascal syntax and constructs.

o Those students exposed to the program development methodology utilizing the literate
programming paradigm were as successful in the subsequent CS/2 course as those not
exposed to the methodology.

o Those students exposed to the program development methodology utilizing the literate
programming paradigm were significantly more successful in the Data Structures
course than those not exposed to the methodology.

e The subject program development methodology may lead to an improved software
development process; however, more tests should be conducted.

Negatives that are not felt to offset the positives:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

o The program scores were not as high for those students using literate programming.

Other points of interest include:

e The use of two one-hour lab sections is recommended as an effective teaching design
rather than the use of one two-hour lab section. This appears to reinforce iteration
of the problem solving process.

o Those students familiar with the Pascal programming language, or another
programming language, exhibited more resistance to change.

VI.C Extensions and Future Research

The literate programming development methodology should be used in the
introductory computer science course repetitively to see if the performance experienced
during the test study remains consistent, improves, or fades. More importantly, tests
should be performed to verify that neophytes do, indeed, experience more success using
the literate programming paradigm than those with some programming experience.

Tests should also be performed to compare the readability or, more importantly, the
understandability of a WEB program to a “regular” program. This could be accomplished
in several ways. The students could be given a “regular” program and then be required to
answer questions about the program. They could then be given the HEB program, be
required to answer questions about the program, and a determination could be made as
which program was easier to read. There may some discrepancy as to whether or not prior
understanding of the “regular” program affected the understanding of the WEB program.

This same concept of comparison could be used to test the maintainability of a
program. Two sets of students could be required to modify a program. One group will be
required to perform maintenance on a “regular” program and the second group be

required to perform maintenance on a WEB program. The results could then be used to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

determine the maintainability of a WEB program.

The tests regarding the readabilty and maintainability of a program could be
conducted in the educational environment. However, a study regarding the
maintainability of a WEB program versus a “regular” program should be performed over
several years of the program’s lifetime.

It is believed that extended use of the literate programming methodology may lead to
improved problem solving skills and, therefore, improve the software development process.
For this reason, the program development methodology should continue to be tested
throughout all levels of the undergraduate curriculum. A study should be performed in
which the literate programming development methodology is used by a group of students
over the course of their college career. This study might also compare students with no
programming experience to those with some exposure to programming languages.

Extended use of the program development methodology can be used to improve the
problem solving skills for novice programmers. It should prove to be an effective means for
teaching problem solving and programming in the introductory computer science course.
The improvement in problem solving skills should result in well-documented, higher

quality software that is easier to read and maintain.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10.

11.

12.

13.

14.

15.

98

REFERENCES

. Bentley, J. Programming pearls—Iliterate programming. Communizations of the ACM

29, 5 (May 1986), 364-369.

. Bishop, J. M., and Gregson, K. M. Literate programming and the LIPED environment.

Structured Programming 18 (1992), 21-34.

. Boehm, B. W. Software Engineering Economics. Prentice-Hall, Inc., Englewood Cliffs,

NJ, 1981.

. Boehm, B. W. Improving software productivity. IEEE Computer 21, 5 (September

1987), 43-57.

. Boehm, B. W. A spiral model of software development and enhancement. IEEE

Computer 21, 5 (May 1988), 61-72.

Brooks, F. P. No silver bullet: Essence and accidents of software engineering. IEEE
Computer 20, 4 (April 1987), 10-19.

Brown, M. E. An Interactive Environment for Literate Programming. PhD dissertation,
Texas A&M University, College Station, TX, Aug. 1988.

. Brown, M. E., and Childs, B. An interactive environment for literate programming.

Journal of Structured Programming 11, 1 (1990), 11-25.

. Buyukisik, O. F. Communication on June 1, 1993 at 9:49 CDT. Literate Programming

Mailing List. e-mail: ae1181t@stnfor.ae.ge.com.

Cameron, D., and Rosenblatt, B. Learning GNU Emacs. O’Reilly & Associates, Inc.,
Sebastopol, CA, 1991.

Cates, W. M. A Practical Guide to Educational Research. Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1985.

Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., and Glaser, R. Self-explanations:
How students study and use examples in learning to solve problems. Cognitive Science
18 (1989), 145-182.

Conklin, J. Design rationale and maintainability. =~ Tech. Rep. STP-249-88,
Microelectronics and Computer Techrology Corporation, Austin, TX, June 1988.

Conllin, J., and Begeman, M. L. gIBIS; a hypertext tool for team design deliberation.
In Hypertezt 87 Papers (New York, NY, 1987), Association for Computing Machinery,
pp. 247-251.

Conlklin, J., and Begeman, M. L. gIBIS: a hypertext tool for exploratory policy
discussion. Tech. Rep. STP-082-88, Microelectronics and Computer Technology
Corporation, Austin, TX, March 1988.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32

99

Conover, W. J. Practical Nonparametric Statistics, 2 ed. John Wiley & Sons, Inc., New
York, 1980.

Cordes, D., and Brown, M. The literate-programming paradigm. IEEE Computer 24,
6 (June 1991), 52-61.

Denning, P. J., Comer, D. E., Gries, D., Mulder, M. C., Tucker, A., Turner, A. J., and
Young, P. R. Computing as a discipline. Communications of the ACM 32, 1 (January
1989), 9-23.

Department of Defense — Ada Joint Program Office. Ada methodologies: Concepts and
requirements. Software Engineering Notes 8, 1 (January 1983), 33-50.

Dyer, J. R. Understanding and Evaluating Educational Research. Addison-Wesley
Publishing Company, Inc., Reading, MA, 1979.

Etlinger, H. A., and Lutz, M. J. Professional literacy: Labs for advanced programming
courses. In The Papers of the Twenty-Fifth SIGCSE Technical Symposium on Computer
Science Education (Mar. 1994), vol. 26, pp. 102-105.

Fairley, R. E. Software Engineering Concepts. McGraw-Hill Publishing Company, Inc.,
New York, 1985.

Fix, V., Wiedenbeck, S., and Scholtz, J. Mental representations of programs by novices
and experts. In Proceedings INTERCHI ’93 (Human Factors in Computing Systems)
(New York, NY, April 1993), Association for Computing Machinery, pp. 74-79.

Henderson-Sellers, B., and Edwards, J. M. The object-oriented systems life cycle.
Communications of the ACM 33, 9 (Sept. 1990), 142-159.

Husic, F'. T., Linn, M. C., and Sloane, K. D. Adapting instruction to the cognitive
demands of learning to program. Journal of Educational Psychology 81, 4 (1989), 570~
583.

Kendall, P. A. Introduction to Systems Analysis and Design: A Structured Approach,
second ed. Wm. C. Brown Publishers, Dubuque, IA, 1989.

Knuth, D. E. The WEB system of structured documentation. Stanford Computer Science
Report CS980, Stanford University, Stanford, CA, Sept. 1983.

Knuth, D. E. Literate programming. Computer Journal (May 1984), 97-111.

Knuth, D. E. TgX: The Program, vol. B of Computers & Typesetting. Addison-Wesley,
Reading, MA, 1986.

Koffman, E. B. Pascal: Problem Solving and Program Design, fourth ed. Addison-
Wesley Publishing Company, Inc., Reading, MA, 1992.

Kreitzberg, C. B., and Shneiderman, B. The Elements of FORTRAN style: Techniques
for Effective Programming. Harcourt Brace Jovanovich, Inc., New York, 1972.

Larkin, T. Communication on July 16, 1993 at 9:05 CDT. Literate Programming
Mailing List. e-mail: tsl1@cornell.edu.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

100

Lease, M. W., Lively, W. M., and Leggett, J. J. Using an issue-based hypertext system
to capture the software life-cycle process. Hypermedia 2, 1 (1991), 29-46.

Linn, M. C., and Clancy, M. J. Can experts’ explanations help students develop
program design skills? International Journal of Man-Machine Studies 36, 4 (1992),
511-551.

Linn, M. C., and Clancy, M. J. The case for case studies of programming problems.
Communications of the ACM 35, 3 (March 1992), 121-132.

Linn, M. C., and Clancy, M. J. Designing Pascal Solutions: A Case Study Approach.
W. H. Freeman, New York, 1992.

Linn, M. C., and Dalbey, J. Cognitive consequences of programming instruction:
Instruction, access, and ability. Educational Psychologist 20, 4 (1985), 191-206.

Linn, M. C., Sloane, K. D., and Clancy, M. J. Ideal and actual outcomes from precollege
pascal instruction. Journal of Research in Science Teaching 24, 5 (1987), 467-490.

Lins, C. A first look at literate programming. Journal of Structured Programming 10,
1 (1989), 60-62.

Lins, C. An introduction to literate programming. Journal of Structured Programming
10, 2 (1989), 107-112.

Liu, L., and Horowitz, E. Object database support for a software project management
environment. In Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments) (New York, NY,
November 1988), Association for Computing Machinery, pp. 85-96.

Maruyama, G., and Deno, S. Research in Educational Settings. SAGE Publications,
Inc., Newbury Park, CA, 1992.

Mehringer, V. Communication on April 14, 1993 at 17:19 CDT. Literate Programming
Mailing List. e-mail: vinceQeye.com.

Meister, D. Behavioral Analysis & Measurement Methods. John Wiley & Sons, Inc.,
New York, 1985.

Motl, M. B. A Literate Programming Environment Based on an Eztensible Editor. PhD
dissertation, Texas A&M University, College Station, TX, December 1990.

Nance, D. W. Pascal: Understanding Programming and Problem Solving, third ed.
West Publishing Company, Inc., St. Paul, MN, 1992.

Ott, L. An Introduction to Statistical Methods and Data Analysis, 3 ed. PWS-Kent
Publishing Company, Boston, MA, 1988.

Pierce, K. R. Rethinking academia’s conventional wisdom. IEEE Software 10, 2 (March
1993), 94-95, 99.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

101

Pinto, J., and Soloway, E. Providing the requisite knowledge via software
documentation. In Proceedings CHI ’88 (Human Factors in Computing Systems) (new
York, NY, 1988), Association for Computing Machinery, pp. 257-261.

Pirolli, P. L., and Anderson, J. R. The role of learning from examples in the acquisition
of recursive programming skills. Canadian Journal of Psychology 89, 2 (1985), 240-272.

Ramsey, N. Communication on June 28, 1993 at 12:11 CDT. Literate Programming
Mailing List. e-mail: norman@bellcore.com.

Ramsey, N. Weaving a language-independent WEB. Communications of the ACM 32, 9
(Sept. 1989), 1051-1055.

Ramsey, N., and Marceau, C. Literate programming on a team project. Software—
Practice and Ezperience 21, 7 (July 1991), 677-683.

Reder, L. M., Charney, D. H., and Morgan, K. I. The role of elaborations in learning
a skill from an instructional text. Memory and Cognition 14 (1986), 64-78.

Redmiles, D. F. Reducing the variability of programmers’ performance through
explained examples. In Proceedings INTERCHI ’93 (Human Factors in Computing
Systems) (New York, NY, April 1993), Association for Computing Machinery, pp. 67-
73.

Roberge, J., and Suriano, C. Using laboratories to teach software engineering principles
in the introductory computer science currictlum. In The Papers of the Twenty-Fifth
SIGCSE Technical Symposium on Computer Science Education (Mar. 1994), vol. 26,
pp. 106-110.

Savitch, W. J. Turbo Pascal. Benjamin/Cummings Publishing Company, Inc.,
Redwood City, CA, 1993.

Schank, P. K., Linn, M. C., and Clancy, M. J. Supporting pascal programming with
an on-line template library and case studies. International Journal of Man-Machine
Studies 38, 6 (1993), 1031-1048.

Sewell, E. W. Weaving a Program: Literate Programming in WEB. Van Nostrand
Reinhold, New York, 1989.

Shelly, G. B., and Cashman, T. J. Business Systems Analysis and Design. Anaheim
Publishing Company, Fullerton, CA, 1975,

Shum, S., and Cook, C. Using literate programming to teach good programming
practices. In The Papers of the Twenty-Fifth SIGCSE Technical Symposium on
Computer Science Education (Mar. 1994), vol. 26, pp. 66-70.

Smith, L. M. C. Measuring complexity and stability of web programs. Master’s thesis,
Oklahoma State University, Stillwater, OK, December 1990.

Smith, L. M. C., and Samadzadeh, M. H. Measuring complexity and stability of web
programs. Structured Programming 13 (1992), 35-50.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64.

65.

66.

67.

68.

69.

70.

71.

72.
73.

74.

75.

76.

77.

78.

79.

80.

102

Soloway, E. Learning to program = learning to construct mechanisms and explanations.
Communications of the ACM 29, 9 (September 1986), 850-858.

Soloway, E. Should we teach students to program? Communications of the ACM 36,
10 (October 1993), 21-24.

Soloway, E., and Ehrlich, K. Empirical studies of programming knowledge. IEEF
Transactions on Software Engineering SE-10, 5 (September 1984), 595-609.

Soloway, E., Ehrlich, K., Bonar, J., and Greenspan, 5. What do novices know about
programming? In Directions in Human-Computer Interaction, B. Shneiderman and
A. Badre, Eds. Ablex Publishing Corp., Norwood, NJ, 1982, pp. 27-54.

Soloway, E., Pinto, J., Letovsky, S., Littman, D., and Lampert, R. Designing
documentation to compensate for delocalized plans. Communications of the ACM 31,
11 (November 1988), 1259-1267.

Spohrer, J. C., and Soloway, E. Novice mistakes: Are the folk wisdoms correct?
Communications of the ACM 29, 7 (July 1986), 624-632.

Sylvan, K. Communication on April 14, 1993 at 5:36 CDT. Literate Programming
Mailing List. e-mail: kayvan@satyr.Sylvan.COM.

Sylvan, K. Communication on June 5, 1993 at 2:11 CDT. Literate Programming
Mailing List. e-mail: kayvan@satyr.Sylvan.COM.

Texas A&M University ~ Undergraduate Catalog, 1993-1994. No. 116.

Thimbleby, H. Experiences of ‘literate programming’ using cweb (a variant of Knuth’s
WEB). The Computer Journal 29, 3 (June 1986), 201-211.

Tucker, A. B., Ed. Computing Curricula 1991 - Report of the ACM/IEE-CS Joint
Curriculum Task Force (New York, NY, December 1990), Association for Computing
Machinery. .

Tucker, A. B., and Wegner, P. New directions in the introductory computer science
curriculum. In The Papers of the Twenty-Fifth SIGCSE Technical Symposium on
Computer Science Education (Mar. 1994), vol. 26, pp. 11-15.

van Ammers, E. W. Communication on July 16, 1993 at 7:05 CDT. Literate
Programming Mailing List. e-mail: ammers€rcl.wau.nl.

Wagner, Z. Communication on July 16, 1993 at 3:00 CDT. Literate Programming
Mailing List. e-mail: WAGNER),CSEARN.BITNET@SHSU. edu.

Williams, R. N. Funnelweb User’s Manual. anonymous FTP at
sirius.itd.adelaide.edu.au, May 1992. V1.0 for FunnelWeb V3.0.

Wirth, N. Systematic Programming: An Introduction. Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1973.

Wittenberg, L. Communication on July 18, 1993 at 13:37 CDT. Literate Programming
Mailing List. e-mail: leew@pilot.njin.net.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

APPENDIX A

COURSE MATERIALS

This appendix consists of materials that were distributed to the participants enrolled
in the test study. The first 4 pages are information on how the students were graded and
what was expected from each of their lab assignments. The students enrolled in the
comparison classes received similar guidelines.

The next 3 pages are samples of the grading sheets for the lab assignments. The
tentative class schedule is included and consists of a list of the textbook chapters for
which each student was responsible, test dates, and the due dates for lab assignments.

The pre-test which was given to the test study participants appears next, followed by
the GNU Emacs Reference Card.

The next document (5 pages) is the WEB User Manual Exerpt which was distributed to
tile test study participants.

The students’ first lab assignment was to type in the quadratic equation problem,
which appears next. It is immediately followed by a TANGLEd and a WEAVEd version of the
program (10 pages total).

The next three documents are TEX samples which were distributed to the students
during the lab period (9 pages total).

The remainder of the appendix consists of all lab assignments (6 pages) and the exams

which were given during the course (43 pages).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

CPSC 110
PROGRAMMING I

Ms. Byrum
3118 H. R. Bright
Office Phone: 845-5787

Prerequisite: High School Algebra
Office lfours: 4:00-5:00 MTWR
Otlers by appointment

REQUIRED TEXTS: Nance, Douglas W., Pascal: Understanding Progr ing and Problem
Solving, Third Edition, West Publishing Company, 1992.

OPTIONAL TEXT: Nance, Douglas W., Student Solutions Manual to Accompany Pascal: Un-
derstanding Programming and Problem Solving, Second Alternate Edition,
West Publishing Company, 1992.

EXAMINATIONS: (60% of the course grade)

3 Class Examinations 12% each
Final Examination-Compreliensive 24%

Tentative Exam Schedule:

Exam 1 Friday, September 24

Examn 2 Friday, October 22

Exam 3 Friday, November 19

Final Tuesday, December 14, 10:30 a.m. ~-12:30 p.m.

NOTE: There are no exemptions for the final examination. Check the final exam
time. If the final exam time is a problem, you need to drop this course.

ASSIGNMENTS: (40% of the course grade)

30% programumning/hotnework assignments
10% class participation/short, unscheduled quizzes

GRADING POLICY: Final grades will be assigned as follows:

90 - 100 A
80 - 89 B
70- 79 C
60 - 69 D
below 60 F

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

CLASS INFORMATION AND POLICIES
Department of Computer Science, IRBB 311B, 845-5787

ATTENDANCE: Attendance will be taken each day in class. Attendance will not be used in
calculating your final grade; however, class participation is a portion of your
final grade. If you are absent from class please do not come by my office and
ask me to repeat the class lecture. There will be no smoking, no chewing of
tobacco, no bare feet, and no wearing of hats during class.

EXAMINATION POLICY: All class examinations are considered to be a major part of the course work
upon which a large part of the course grade depends. There are NO make-
up exams! Class examinations will be announced at least two classes prior
to the examination. If you have a conflict with another university event, you
must contact me well in advance of the examination. In case of an extreme
emergency, contact me before the scheduled examination. Failure to do so
will result in an examination grade of zero.

ASSIGNMENT POLICY: All assigninents are due as specified by the lab assistant. Any assignment
turned in after the assignients have been collected from the class is con-
sidered late. Late labs will be penalized 10% for each calendar day late,
beginning with the day on which the lab is due. Under NO circumstances
will any assignment be accepted for credit after the collected class assign-
ments have becn graded. If you are unable to turn in 2 lab during class time
and are unable to find me or the lab assistant, place it under my door or
under your lab assistant’s door.

IMPORTANT: Every programming assignment MUST be turned in. Failure to turn in a
programming assignment may result in the reduction of one (1) letter grade
from the final course grade.

CHEATING POLICY: If in my judgement a student is found cheating on an examination, a grade
of zero will be assigned as the examination grade and a minimum of one
(1) letter grade will be lost in the course grade. A course grade of F may
be assigned depending on the situation. A student found cheating on an
examination may not drop the course.

All other class assigminents are to be done INDEPENDENTLY. Discus-
sion is encouraged, but you are to do your own work. If in my judgement
two or more people hand in assigninents that I judge to be the same, a grade
of zero will be awarded to all involved assignments and a minimum of one
letter grade may be lost in the course grade. A recurrence of this by any
individual will result in a grade of F in the course. Students should save all
developmental copies of their programs so that individual program develop-
ment can be verified to me if I think it is necessary. DO YOUR OWN
WORKI1Y

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

CPSC 110
Fall 1993
Laboratory information
Lab Assistant: Peter Nuernberg
Lab Hours: TR 2:00 - 4:50
Oftice: HRBB 4148 (inside the Hypermedia Research Laboratory)

Oftice Hours: MWF 1:45 - 2:45
Office Phone: 845-9980

Supplies Needed: at least two 3'/," fioppy diskettes.

Laboratory Guidelines;

For each lab, turn in both a disk with all source files, AND a printout of the
WEAVE'd and TgX'd WEB file.

Grade Breakdown:

. Initial Design - 50 points
The initial design should address, at a minimum, the following points:
Problem Statement
inputs Required
Qutputs Generated
Processing Required
Algorithm Development
F. Testing
The design will be produced by WEAVE'ing and TeX'ing the WEB source. Turn
in only the printout during this phase. Spelling, grammar, style, etc. are
important and will be factored into your grade.

moom»

Il. Final Lab - 100 points
A. Documentation / Design - 50 paints
This part of your finai lab is a corrected and updated version of your initial
design. It should address the same points as your initial design. Also

included in your grade is the degree of correlation between your
documentation and your implementation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

There are a few things I'd like 10 point out specifically about documentation:

1) You will be implementing some complex concepts in your programming
assignments, so | expect your programs to be well-documented. There
are two levels of documentation:

» chapter / section level - at this level, you are 10 give a general
description of what the chapter/section is intended 1o do. Note that
the program description is accompanied by your Name, Class, etc.
Some modules implement rather complex algorithms, so their
descriptions are more detailed than the others. Other modules might
make important assumptions that should be mentioned.

« code level - at this level, you are to explain what the program is doing
at that particular moment. This kind of comment is much more
specific than the chapter/section description. i possible, make sure
your comments don‘t "wander" all over the page.

2) Your should give your identifiers meaningful names.

3) You should minimize the use of global variables. Any data item used in
amodule should be passed as a parameter or declared locally.

B. Implementation - 50 points

Implementation generally refers to how well your program solves the given
problem. ltis assumed that your program runs -- in fact, you automatically
lose 50% if your program doesn't compile! This portion will cover any errors
that exist in the compiled program. Failure to follow instructions will be
reflected here.

A tew words on cheating:
Don'tdoit.
Please read the section entitled Scholastic Dishonesty in the University Regulations
if you are unsure what constitutes cheating. This section also details the disciplinary

action which can be taken in scholastic dishonesty cases. These actions include
grade penalty, probation, suspension, dismissal, and/or expulsion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CPSC 110 - Lab 1 Grade Sheet
Name:

WEBfile: /45 TEXfile
PAS tile

Total: /100

.DVlile
.EXE file

CPSC 110 - Lab 1 Grade Sheet
Name:

WEBfile: /45 = TEXtile
.PAS file

Total: /100

.DVlfile
EXE tile

CPSC 110 - Lab 1 Grade Sheet
Name:

WEBfile: /45 . .TEXfile
.PAS file

Total: _____ /100

.DVifite
.EXE file

CPSC 110 - Lab 1 Grade Sheet
Name:

WEBfile: 145 = TEXfile
.PAS file

Total: _____ /100

.DVliite
EXE file

CPSC 110 - Lab 1 Grade Sheet
Name:

WEBfite: /45 _ .TEXfile
PAS file

Total: ____ /100

.DVltile
{EXE file

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

CPSC 110 - Initial Design Grade Sheet

Name:
Lab: Totalgrade.________/50

Problem Statement

inputs Required

Outputs Generated

Processing Required

Algorithm Development

Testing

Writing Competence

Document Design

Other

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

CP3C 110 - Lab Grade Sheet

Name:
Lab: Total grade. _____/100
Problem Statement Compilation Errors
inputs Required
Run-time Errors
Qutputs Generated
Processing Required

Logical Errars

Algorithm Development

Document/Program Correspondence

Testing
Writing Competence
Elegance
Document Design
Other Other
Design Grade___ 50 Implementation Grade: /80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

111

eng 9 qwy

9 Qw1 ubtssy ‘sng § q¥]

uStseq § QWY WIniley

sng ufivaeq § qet

wexy (wuvy
R TABY
ey wod
9T 19ide)
9t 1eadeud
3t 1@adeyd
9t 1@adeys
91 Jmadey)
$1-0t sJeidwy) - (ey
9T I®adeyd
¢T 1wadeud
"t 2eadeud
*t 1@adayd

T €T I02dRY)

re/tt

9/
I¥E49
/2T

€/t
T/TT
/2t
QE/TT
6Z/1T

127449
€T/t
IT/T

sL/1L
at/tt
L/t
9L/t
st/tt

LT/t
[974 8¢
ot/stt
8/t¢
e/1tT

st

149

(24

149

141

Z1 1®adeud

21 1eadeud
§ qwt ubtasy ‘Ing » Q1
Zt 'tt is3dwud

11 Isadeud
It 2eadeuyd
0ot 1e3deyd
6-5 sxsaidegd - T seL
uftssq » QW7 UINISY
ot <sideys
ang ub1seq » qwl
6 1sadeqd
& 1@idemyd
» Qv uSyssy ‘anq ¢ q¥1
§ 9 1»ideyd

6 ‘8 33deyd

L Isadey)
UGTSHN] ¢ T 2INIDY
L Ieadey)d
ang 26t38q ¢ Qw1
3 1eydey)
3 2e3dwud
3 ssadeyy
{ 3wy 1Oty ‘snq I ¥l
3 1®3deqd

SutwweiSold gin ‘9~ §393d39) - T BAL

s i@adeyd
usSisaq 7 q¥l uInsey
Jutoueitold gIm

? ‘g ‘T 1e)dwy) ‘g3m

ang ubtseq 7 QYT ‘TPUENDD §3M
» ‘¢ ‘z midwud ‘gaM

SPUTMDI YO ‘9N
y ‘¢ ‘T tw3dwy) ‘g3In

anq [Q¥ v 'C ‘T amdewd

z qQwy uStssy ‘o[Tcmo? ‘TIINW
spow-qan ‘gIn ‘XOL

sdIap "YWL ‘IAVIN “SO€S
t g7 uStssy ismy 234

AN TTISHVL ‘93M
saa
T ‘T aeadeq)
W7 IINPOIIUT AINOY
dALAYHI/ITdAOL a¥T WALAYHD/ J12QL WAL

2INPOYDS SATINIUEL

S/t
r/TT
(A44
T/t
17244

6Z/0%
az/ot
LZ/ot
9Z/01
sT/ot

zz/ot
tz/ot
oz/ot
6T/01
8t/ot

st/0T
/o1
£1/01
Tt/ot
1T/01

8/0t
L/01
9701
s/ot
/08

t/01
/6
8l/6

9876

I3 24

[224
cT/e
Tl/6
tz/6
/s

(A 74
9t/6
SU/6
ru/6
£1/6

ot/6
§/6
8/6
t/6
6

€76
6
t/6
ac/e

ot

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

September 6, 1993 Name

CPSC 1101 Mrs. Dunn
PreTest

1. What computer science courses have you taken? Give a description of any courses taken in
high school and/or college(s).

2. What computer languages do you know?
» The languages I can program in without a reference manual.

» The languages I can program in with the lelp of the reference manual.

» | have previously programmed in these languages but would require some review and
the use of a manual.

3. What experience do you have with emacs (prior to September 1)?

4. What experience do you have as a professional programmer? Give language and type of
work.

5. What experience do you have with literate programming?

Classification Major

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

September 6, 1993 Name

The purpose of this test is a preliminary evaluation of your problem-solving skills. State the
sleps necessary to solve this problem. Give detailed answers in complete English sentences and
paragrapls.

You are the manager of Aggie Lawn Service. Alvin is your new employee. You must explain
to Alvin the process of calculating an estimate for a potential customer. (Of course, in the future
this may use a hand-held computer.) The quote will include a cost statement and estimated time
to complete the job.

This estimate is based upon the area of the lawn and a standard (confidental) charge per
square foot. Grass can be cut at the rate of 2 square feet per second. You may assuwne that a
rectangular house is situated in a rectangular yard. Give the details of the process and itemize
all assumptions you have made.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘uolssiwiad 1noyum paugiyotd uononpoidal Jayung “1aumo ybuAdoo ayj Jo uoissiwiad yum paonpoiday

GNU Emacs Reference Card

(for wersion 18). wab-meds

Starting Emacs

To enter Emacs, just type its pame: emacs
To read in a file to edit, sec Files, below.

Leaving Emacs
surpend Emacs (the usua) way of Jeavingit) C-z

exit Emacs permanently C~x C-c
Files

read a file into Emacs C-x C-t
save a file back to disk C-z C-s

inrert contente of another file into this bufier C-x §
replace this file with the file you realiy want C-z C-v
write buffer to a specified file C-z C-»
run Dired. the directory editor C-zx &

Getting Help

The Help system is simple. Type C-b and follow the directions.
I you are a firsi-time user. type C-b t for & sutorial. (This
card assumes you know the tutorial.}

et rid of Help wandow C-x 1
scroll Help window ESC Cev
apropos: show commands matching a string C-h a
show the function a key runs C-b ¢
describe a function c-h ¢
get mode-specific information C-hm

Error Recovery

abort partially typed or executingcommand C-g

recover a file jost by a svstem crash K-z recover-file
undo an unwanted change €-x u or C-_
restore a bufier to its original contents M-z revert-btuffer
redraw garbaged screen c-1

Incremental Search

search forward C~s

search backward C-r

regular expression ecarch c-n~s

Use C-s or C-r again 1o repeat the search in either direction.
exit incremental search ESC

undo effect of last character DEL

abort current search C-g

If Emacs is still searching. C-g will cancel the part of the search
not done, otherwise it aborts the entire search.

© 1987 Frec § F imc. P

on back. v1.9

Motion

Cursor motion:

entity to move over

character

word

line

€0 to line beginning (or end)

sentence

paragraph

page

sexp

function

g0 to buffer beginning (or end)
Screen motion:

ecroll to next screen

scroll to previous screen

saoll left

scroll right

Killing and Deleting

entity to kill

character (delete. not kill)

word

line (Lo end of)

sentence

sexp

kili region

kill to next occurrence of casr
vank back last thing killed

replace last yank with previous kill

Marking

set mark bere

exchange point and mark
se1 mark ary words away
mark paragraph

mark page

mark sexp

mark function

mark entire buffer

Query Replace

interactively replace a text string
using regular expressions

Valid
replace this one, go on to next
replace this onc, don't move

skip to next without replacing
replace all remaining matches
back up to the previous match
exit query-replace

enter recursive edit {(C~K-c to exit)

backward forward

C=b c-t
N-d n-z
C-p Ca
C~a C-e
A-a R-s
n-{ n-)
Cc-x { C-x)
C-A-b C-n-t
C-N-a C-K-a
Hec R->

C~v

Rey

C-x <

C-z >
backward forward
DEL C-d
N-DEL -4
R=0 C-k C~k
C-z DEL n-x
H-- C-B-k C-K-k

C-»

B-z char

C-y

R-y

C-¢ or C-3PC

C-x C-x

n-e

N-2

C-x C-p

C-R-¢

C-B-b

C-x h

n-Y

P in query-replace mode are

SPC

DEL
H

ESC
C-r

N-x queary~replace-rTegexp

Multiple Windows

delete all other windows C-x 1
delete this window C-x 0O
split window in 2 vertically C-z 2
split window in 2 borizontaly C-x §
ecroll other window C-F-v
switch cursor 1o another window C-x o
shrink window shorter K-z shriak-vindow
grow window taller C-xz =
shrink window parrower C-x {
grow window wider C-x }
select a buffer in other window C-x 4%
find file in other window C-x 4 ¢
compoee mail in other window Cz4m
run Dired in other window C-x 4 &
fingd tag in other window C-x 4 .
Formatting

indent current line (mode-dependent) TAB
indent region (mode-dependent) C-n~\
indent sexp (mode-dependent) C-R-q
indent region rigidly srp columns C-z TAB
insert newline after paint C~o
move rest of line vertically down C-N=-o
delete blank lines around point C-x C-¢
delere all whitespace around point K=\

put exactly one space at point R-SPC
fill paragrapb n-q

fili region n-g

set fill column C-z £
set prefix each line starts with C-x .
Case Change

uppercase word Y
iowercase word n-1
capitalise word A~
uppercase region C-x C-»
lowercaae region C-x C-1
capitalize region fi-x capitalize-Tegion

The Minibuffer

The following keys are defined in the minibuffer.

complete as much as pomsible TAB
complete up to one word spC
complete and execute RET
show poesible completions h 4

abort command c-g

Type C-x ESC to edit and repeat the last command that used
the minibuiler. The following kevs are then defined.

P Rep
next minibuffer command Hen

PRTr "

1448

"uoissiuad noyum panqiyosd uononpoidas Joyung “Joumo JyBLAdoo ay} Jo uoissiwiad ypm paonpoidoy

GNU Emacs Reference Card

wed~mode version

Buffers

select another buffer C-x b
Iist all buffers €=z C=d
kill & buffer C-z X
Transposing

transpose characters Cc-t
transpose words A=t
transpose linex Cex C-t
transpoee sexpé C-H=-t
Spelling Check

check spelling of current word n-g

check opeliing of all words in region f-x spsll-region
check speliing of entire bufier R-1 spell-duffer

Regular Expressions

The following have special meaning inside a regular expression.

any single character . (dot}
1£7D OF MOTE repests .
one or more repeats -
2€TO OF one repeat k4
any character in set f...1
any character not in set ...
begianing of line =
end of ine s
quote a special dnrlc%er ¢ \e
alternative (“or™) \
grouping \NCL..)
ath group \n
beginning of buffer *
end of bufler \?
word break \»
not beginning or end of word \B
beginning of word \<
end of word \>
an) word-syntax character \s
any non-word-syntax character \v
character with syntax ¢ \sc
character with syntax not ¢ \S¢
Registers

COpy region to register C-x x
lnmt register contents C-x g
save point in register C-x /
move point to saved location C-z j

Mode ~ web-mode

Navigation in ved~mode

goto section uamed (completion)

goto section #

next seclion

previous section

which section

goto chapier ¢

next chapter

previous chapler

which chapter

view index

next index

previous index

view oection names hst

next define

next use

previous define

previous use
Outline editing

hide body

show all

next visible heading

previous visible heading

forward same level

backward same ievel

up heading

hide thus entry

show thus entry

hide subtree

show subtree

show children

hide jeaves

show branches
Miscellaneous

rename section

insert index entry

view chapter titles list

view edited sections js

which edited section

count edited sections

count sections

count chapters

delimiter match check

kill emacs from web-mode
Changing buffers ip web-mode

goto buffer. change file

goto buffer, include file

goto bufier, web file
Change file commands

edit aection

goto edited section #

next edited section
previous edited section

C-c
C~c
C-c
C-c

C-c
C-c

C-c
C-x

C~c
C~c

C-c
C-c
C~c
c-c

n
YWD e DB e eV O

a
S re s oo oI D LN
THNE ARSI e O

OB % ey 9494 »H

voy
-«

]
AR Awe 80N R

" Od OB we AN B

Y

Keyboard Macros

start defining » keyboard macyo C-x (

end keyboard macyo definition c-z)

execute lasi-defined kevboard macro Cox o

oppend to last keyboard macro C=a C~x (
name last keyboard macro K-z aeme-last-kbd-macro

insert lisp definition in buffer R-x imsert-kbd-macro

Commands Dealing with Emacs Lisp

eval sexp before point C-x C~e
eval current defun C~N-x
eval region N-x eval-regiom
eval entire buffer -z eval-~curront-buffer
read and eval minibufier N~ESC

lest minibuffer d C-x ESC
read and eval E.maa Lisp ﬁlc A=z lead-file
load from stand: y > A~z lead-lidrary

Simple Customization
Here are some examples of binding giobal keys in Emacs Lisp.
Note that you cannot say “\K~8*; vou must say “\es$>.

(global-set-key "\C-cg" ’goto-lime)
(global-set-key “\e\C-r" ’imearch-b P)
(global-ser~key "\os" lq\cry-r.phc--ngcy)

An example of setting a variable in Emacs Lisp:
(sstq Backap-by-copying-sher-linked t)

‘Writing Commands

(degun (command.name) ((args))
»{documentation)"
(interactive “(iemplate)™)
{body))
An example:
(defun this-line~to~top-of-screen (lime)
“Reposition lime point is on to the top of
the screen. WUith ARG, put point on lime ARG.
Begative counts from bottom.”
(interactive "P")
(recenter (if (nul} lime)

0
(protir-ammeric-value 1inme))))

The argument to interactiveisa un.ng lpcafym; ho' to get
the sarguments when the f; ion is calied i vely. Type
C~h f interactive for more information.

Copyright © 1987 Free Sefiware Foundation, lnc.

designed by Stephen Gildea. March 1987 v1.9
for GNU Emacs version 16 on Umiz eysiome

Permission is gramied 10 make and distribuie copies of this card pre-
wvided the copynghi notice and 1h1s PErmaMIIOn BOTICE Are preserved on
all copres.

For copres of the GNU Emaco manwal. muo 10 the Free Sofiware Foun-
davren, Inc.. 873 M Avwe, C MA 02139

eIt

116

WEB USER MANUAL 1

This memo describes how to write programs in the WEB language; and it also includes the full VEB docu-
mentation for VEAVE and TANGLE, the programs that read WEB input and produce TEX and Pascal output,
respectively. The philosophy behind WEB is that an experienced system programmer, who wants to provide
the best possible documentation of his or her software products, needs two things simultaneously: a language
like TgX for formatting, aud a language like Pascal for programming. Neither type of language can provide
the best documentation by itself; but when both are appropriately combined, we obtain a system that is
much more useful than either language separately.

The structure of a software program may be thought of as a “web” that is made up of many interconnected
pieces. To document such a program, we want to explain each individual part of the web and how it relates to
ita neighbors. The typographic tools provided by TEX give us an opportunity to explain the local structure of
each part by making that structure visible, and the progtamming tools provided by Pascal make it possible
for us to specify the algorithms formally and unambiguously. By combining the two, we can develop a style
of programming that maximizes our ability to perceive the structure of a complex piece of software, and
at the same time the documented programs can be mechanically translated into a working software system
that matches the documentation.

General rules. A VEB file is a long string of text that has been divided into individual lines. The exact
line boundaries are not terribly crucial, and a programmer can pretty much chop up the WEB file in whatever
way seems to look best as the file is being edited; but string constants and control texts must end on the
same line on which they begin, since this convention helps to keep errors from propagating. The end of a
line means the same thing as a blank space.

Two kinds of material go into WEB files: TEX text and Pascal text. A programmer writing in WEB should be
thinking both of the documentation and of the Pascal program that he or she is creating; i.e., the programmer
should be instinctively aware of the different actions that WEAVE and TANGLE will perform on the VEB file.
TEX text is essentially copied without change by WEAVE, and it is entirely deleted by TANGLE, since the TEX
text is “pure documentation.” Pascal text, on the other hand, is formatted by WEAVE and it is shuffied around
by TANGLE, according to rules that will become clear later. For now the important point to keep in mind is
that there are two kinds of text. Writing WEB programs is something like writing TEX documents, but with
an additional “Pascal mode” that is added to TEX's horizontal mode, vertical mode, and math mode.

A VEB file is built up from units called modules that sre more or less self-contained. Each module has
three parts:

1) A TgX pant, containing explanatory material about what is going on in the module.

2) A definition part, containing macro definitions that serve as abbreviations for Pascal constructions that
would be less comprehensible if written out in full each time.

3) A Pascal part, containing a piece of the program that TABGLE will produce. This Pascal code should ideally

be about a dozen lines long, so that it is easily comprehensible as a unit and so that its structure
is readily perceived.

The three parts of each module must appear in this order; i.c., the TEX commentary must come first, then
the definitions, and finally the Pascal code. Any of the parts may be empty.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

2 WEB USER MANUAL

A module begins with the pair of symbols ‘e’ or ‘0¢’, where ‘,’ denotes a blank space. A module ends at
the beginning of the next module (i.e., at the next ‘6.’ or ‘8+’), or at the end of the file, whichever comes
first. The VEB file may also contain material that is not part of any module at all, namely the text (if any)
that occurs before the first module. Such text is said to be “in limbo”; it is ignored by TABGLE and copied
essentially verbatim by WEAVE, o its function is to provide any additional formatting instructions that may
be desired in the TEX output. Indeed, it is customary to begin a WEB file with TEX code in limbo that loads
special fonts, defines special macros, changes the page sizes, and/or produces a title page.

Modules are numbered consecutively, starting with 1; these numbers appear at the beginning of each
module of the TEX documentation, and they appear as bracketed comments at the beginning of the code
generated by that module in the Pascal program.

Fortunately, you never mention these numbers yourself when you are writing in WEB. You just say ‘¢’
or ‘@s’ at the beginning of each new module, and the numbers are supplied automatically by WEAVE and
TANGLE. As far as you are concerned, a module has a name instead of a number; such a name is specified by
writing ‘@<’ followed by TEX text followed by ‘@>’. When WEAVE outputs a module name, it replaces the ‘e<’
and ‘8>’ by angle brackets and inserts the module number in small type. Thus, when you read the output
of VEAVE it is easy to locate any module that is referred to in another module.

For expository purposes, a module name should be a good description of the contents of that module, i.e.,
it should stand for the abstraction represented by the module; then the module can be “plugged into” one
or more other modules so that the unimportant details of its inner workings are suppressed. A module name
therefore ought to be long enough to convey the necessary meaning.

We have said that a module begins with ‘@’ or ‘@#’, but we didn’t say how it gets divided up into a TgX
part, a definition part, and a Pascal part. The definition part begins with the first appearance of ‘64’ or ‘ef’
in the module, and the Pascal part begins with the first appearance of ‘ep’ or ‘@<’. The latter option ‘¢<’
stands for the beginning of a module name, which is the name of the module itself. An equals sign (=) must
follow the ‘@>’ at the end of this module name; you are saying, in effect, that the module name stands for the
Pascal text that follows, so you say ‘(module name) = Pascal text’. Alternatively, if the Pascal part begins
with ‘6p’ instead of a module name, the current module is said to be unnamed. Note that moduk names
cannot appear in the definition part of a module, because the first ‘€<’ in a module signals the beginning of
its Pascal part. Any number of module names might appear in the Pascal part, however, once it has started.

The general idea of TANGLE is to make a Pascal program out of these modules in the following way: First
all the Pascal parts of unnamed modules are copied down, in order; this constitutes the initial approximation
To to the text of the program. (There should be at least one unnamed module, otherwise there will be no
program.) Then all module names that appear in the initial text Ty are replaced by the Pascal parts of
the corresponding modules, and this substitution process continues until no module names remain. Then
all defined macros are replaced by their equivalents, according to certain rules that are explained later. The
resulting Pascal code is “sanitized” so that it will be acceptable to an average garden-variety Pascal compiler;
i.e., lowercase letters are converted to uppercase, long identifiers are chopped, and the lines of the output
file are constrained to be at most 72 characters long. All comments will have been removed from this Pascal
program except for the module-number comments that point to the source location where each piece of the
program text originated in the VEB file.

1f the same name has been given to more than one module, the Pascal text for that name is obtained by
putting together all of the Pascal parts in the corresponding modules. This feature is useful, for example, in
a module named ‘Global variables in the outer block’, since one can then declare global variables in whatever
modules those variables are introduced. When several modules have the same name, VEAVE assigns the first
module number as the number corresponding to that name, and it inserts a note at the bottom of that
module telling the reader to ‘See also sections so-and-so’; this footnote gives the numbers of all the other
modules having the same name as the present one. The Pascal text corresponding to a module is usually
formatted by WEAVE so that the output has an equivalence sign in place of the equals sign in the VEB file;
i.c., the output says ‘(module name) = Pascal text’. However, in the case of the second and subsequent
appearances of a module with the same name, this ‘=' sign is replaced by ‘+=’, as an indication that the
Pascal text that follows is being appended to the Pascal text of another module.

The general idea of WEAVE is to make a TEX file from the VEB file in the following way: The firat line of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

TEX file will be ‘\input webmac’; this will cause TEX to read in the macros that define VEB's documentation
conventions. The next lines of the file will be copied from whatever TEX text is in limbo before the first
module. Then comes the output for each module in turn, possibly interspersed with end-of-page marks.
Finally, VEAVE will generate a cross-reference index that lists each module number in which each Pascal
identifier appears, and it will also generate an alphabetized list of the module names, as well as a (able of
contents that shows the page and module numbers for each “starred” module.

What is a “starred” module, you ask? A module that begins with ‘@s’ instead of ‘@’ is slightly special
in that it denotes a new major group of modules. The ‘@s’ should be followed by the title of this group,
followed by a period. Such modules will always start on a new page in the TEX output, and the group title
will appear as a running headline on all subsequent pages until the next starred module. The title will also
appeat in the table of contents, and in boldface type at the beginning of its module. Caution: Do not use
TEX control sequences in such titles, unless you know that the webmac macros will do the right thing with
them. The reason is that these titles are converted to uppercase when they appear as running heads, and
they are converted to boldface when they appear at the beginning of their modules, and they are also written
out to a table-of-contents file used for temporary storage while TEX is working; whatever control sequences
you use must be meaningful in all three of these modes.

Control codes. We bave seen several magic uses of '@’ signs in WEB files, and it is time to make a systematic
study of these special features. A WEB control code is a two-character combination of which the first is ‘0’

Heie is a complete list of the legal control codes. The letters L, T, P, M, C, and/or S following each
code indicate whether or not that code is allowable in limbo, in TEX text, in Pascal text, in module names,
in comments, and/or in strings. A bar over such a leiter means that the control code terminates the present
part of the VEB file; for example, T means that this control code ends the limbo material before the first
module.

©0{C,L,M,P,S,T} A double @ denotes the single
character ‘@’. This is the only control code UEB documentation you have to remember
that is legal in limbo, in comments, and in to insert Op in the appropriate places of the
strings. unnamed modules.

0, [L,P, T] This denotes the beginning of a new
(unstarred) module (or section). A tab mark
or end-of-line (carriage return) is equivalent to
a space when it follows an @ sign.

¢+ (L,P,T] This denotes the beginning of a new

starred module, i.e., a module that begins a
new major group (or chapter). The title of
the new group should appear after the @,
followed by a period. As explained above,
TEX control sequences should be avoided

in such titles unless they are quite simple.
When VEAVE and TANGLE read a @9, they
print an asterisk followed by the current

are creating a VEB file based on a TgX-printed

¢< [P,T) A module name begins with &< followed
by TEX text followed by @>; the TEX text
should not contain any WEB control sequences
except €6, unless these control sequences
appear in Pascal text that is delimited
by i...1. The module name may be
abbreviated, after its first appearance in a VEB
file, by giving any unique prefix followed by
«++, where the three dots immediately precede
the closing 6>. No module name should be
a prefix of another. Module names may not
appear in Pascal text that is enclosed in
t...1, nor may they appear in the definition

module number, so that the user can see some
indication of progress. The very first module
should be starred.

op [P, T] The Pascal part of an unnamed module
begins with €p (or 8P). This causes TANGLE
to append the following Pascal code to the
initial program text Tp as explained above.
The VEAVE processor does not cause a ‘@p’ to
appear explicitly in the TEX output, eo if you

part of a module (since the appearance of a
module name ends the definition part and
begins the Pascal part).

¢~ [P,T}] The “control text™ that follows, up to

the next ‘@>’, will be entered into the index
together with the identifiers of the Pascal
program; this text will appear in roman

type. For example, to put the phrase “system
dependencies” into the index, you can type

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘e~systex dependencies®>’ in each module
that you want to index as system dependent.
A control text, like a string, must end on
the same line of the VEB file as it began.
Furthermore, no WEB control sequences are
allowed in a control text, not even €e. (If
you peed an @ sign you can get around this
restriction by typing ‘\AT}".)

0. [P,T] The “control text” that follows will be
entered into the index in typewriter typs;
see the rules for ‘6™’, which is analogous.

@: [P,T] The “control text” that follows will be
entered into the index in a format controlled
by the TEX macro ‘\@’, which the user should
define as desired; aee the rules for ‘0*’, which
is analogous.

8! [P, T] The module number in an index entry
will be underlined if ‘0!’ immediately precedes
the identifier or control text being indexed.
This ccnvention is used to distinguish the
modules where an identifier is defined, or
where it is explained in some special way,
from the modules where it is used. A reserved
word or an identifier of length one will not
be indexed except for underlined entries. An
‘6!’ is implicitly inserted by WEAVE just after
the reserved words function, procedure,
program, and var, and just after 0d and €f.
But you should insert your own ‘0!’ before
the definitions of types, constants, variables,
parameters, and components of records and
enumerated types that are not covered by this
implicit convention, if you want to improve
the quality of the index that you get.

67 [P,T] This cancels an implicit (or explicit)
‘e!’, so that the next index entry will not be
underlined. :

6, {P) This control code inserts & thin space
in WEAVE's output; it is ignored by TANGLE.

Sometimes you need this extra space if you are

using macros i an unusual way, e.g., if two
identifiers are adjacent.

119

¢/ [P] This control code causes a line break to
occur within a Pascal program formatted by
VEAVE; it is ignored by TANGLE. Line breaks
are chosen automatically by TgX according
to a scheme that worke 99% of the time, but
sometimes you will prefer to force a line break
so that the program is segmented according
to logical rather than visual criteria. Caution:
‘a/’ should be used only after statements or
clauses, not in the middle of an expression;
use ¢| in the middle of expressions, in order to
keep VEAVE’s parser happy.

@) [P] This control code specifies an optional
line break in the midst of an expression. For
example, if you have a loag coadition between
if and then, or a long expression on the
right-band side of an assignment statement,
you can use ‘|’ to specify breakpoints more
logical than the ones that TEX might choose
on visual grounds.

@# (P] This control code forces a line break, like
€/ does, and it also causes a little extra white
space to appear between the lines at this
break. You might use it, for example, between
procedure definitions or between groups of
macro definitions that are logically separate
but within the same module.

€+ [P] This control code cancels a line break that
might otherwise be inserted by WEAVE, e.g.,
before the word ‘else’, if you want to put a
short if-then-else construction on a single line.
It is ignored by TANGLE.

Q; [P] This control code is treated like a
semicolon, for formatting purpoees, except
that it is invisible. You can use it, for
example, after a module name when the
Pascal text represented by that module name
ends with a semicolon.

The last six control codes (namely ‘e,’, ‘¢/’, ‘8|’, ‘68’, ‘8+’, and ‘0;’) have no effect on the Pascal program
output by TANGLE; they merely help to improve the readability of the TgX-formatted Pascal that is output
by WEAVE, in unusual circumstances. WEAVE's built-in formalting method is fairly good, but it is incapable of
handling all possible cases, because it must deal with fragmenta of text involving macros and module names;
these fragments do not necessarily obey Pascal’s syntax. Although ¥EB allows you to override the automatic
formatting, your best stralegy is not to worry about such things until you have seen what WEAVR produces
automatically, since you will probably need to make only a few corrections when you are touching up your

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

documentation.
Because of the rules by which every module is broken into three parts, the control codes ‘ed’, ‘ef’, and
‘ep’ are not allowed Lo occur once the Pascal part of a module has begun.

Additional features and caveats.

1. The character pairs ‘(¢’, ‘¢)’, '(., and *.)’ ate converted automatically in Pascal text as though they
were ‘e{’, ‘¢}’, ‘[', and ‘Y’ respectively, except of course in strings. Furthermore in certain installations of
WEB that have an extended character set, the characters ‘#’, ‘S’, 2’, ‘¢, ‘&, ‘A’, ‘¥’, ‘+’, and ‘€’ can be used
as abbreviations for ‘<>’, '<=’, ‘>=’, ‘1=’ ‘==’ ‘and’, ‘or’, ‘not’, and ‘in’, respectively. However, the latter
abbreviations are not used in the standard versions of WEAVE.VEB and TANGLE.WEB that are distributed to
people who are installing WEB on other computers, and the programs are designed to produce only standard
ASCII characters as output if the input consists entirely of ASCH characters.

2. If you have an extended character set, all of the characters listed in Appendix C of The TgXbook can
be used in sirings. But you should stick to etandard ASCII characters if you want to write programs that
will be useful to the all the poor souls out there who don’t have extended character sets.

3. The TEX file output by WEAVE is broken into lines having at most 80 characters each. The algorithm
that does this line bresking is unaware of TEX's convention about comments following ‘%’ signs on a line.
When TgX text is being copied, the existing line breaks are copied as well, 8o there is no problem with %’
signs unless the original WEB file contains a line more than eighty characters long or a line with Pascal text
in |...| that expands to more than eighty characters long. Such lines should not have ‘%’ signs.

4. Pascal text is translated by a “bottom up” procedure that identifies each token as a “part of speech” and
combines parts of speech into larger and larger phrases as much as possible according to a special grammar
that is explained in the documentation of WEAVE. It is easy to learn the translation scheme for simple
constructions like single identifiers and short expressions, just by looking at a few examples of what WEAVE
does, but the general mechanism is somewhat complex because it must handle much more than Pascal itself.
Furthermore the output contains embedded codes that cause TEX to indent and break lines as necessary,
depending on the fonts used and the desired page width. For best results it is wise to adhere to the following
restrictions:

a) Comments in Pascal text should appear only after statements or clauses; i.e., after semicolons, after
reserved words like then and do, or before reserved words like end and else. Otherwise WEAVE's parsing
method may well get mixed up.

b) Don't enclose long Pascal texts in 1...l, since the indentation and line breaking codes are omitted
when the |...| text is translated from Pascal to TEX. Stick to simple expressions or statements.

5. Comments and module names are not permitted in |...| text. After a ‘|’ signals the change from
TEX text to Pascal text, the next ‘|’ that is not part of a string or control text ends the Pascal text.

6. A comment must have properly nested occurrences of left and right braces, otherwise WEAVE and TANGLE
will not know where the comment ends. However, the character pairs ‘\{’ and ‘\}’ do not count as left and
right braces in comments, and the character pair ‘\|’ does not count as a delimiter that begins Pascal text.
(The actual rule is that a character after ‘\’ is ignored; hence in ‘\\{’ the left brace does count.) At present,
TANGLE and VEAVE treat comments in slightly different ways, and it is necessary to satisfy both conventions:
TANGLE ignores ‘|’ characters entirely, while VEAVE uses them to switch between TEX text and Pascal text.
Therefore, a comment that includes 8 brace in a string in |...|—e.g., ‘{ look at this |"{*| }'—will be
bandled corzectly by WEAVE, but TANGLE will think there is an unmatched left brace. In order to satisfy both
processors, one can write ‘{ look at this \leftbrace\ }’, after setting up‘\def\leftbrace{|"{"{}.

7. Reserved words of Pascal must appear entirely in lowercase letters in the VEB file; otherwise their special
nature will not be recognized by WEAVE. You could, for example, have a macro named END and it would
not be confused with Pascal’s end.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

£33

% WEB SYSTEM : web -

3 PROGRAM : Quad_eq.web

% AUTHOR : Peter J. Nuernberg (pnuern€@photon}

¢ CREATION DATE : Mon Sep 6 08:51:49 1993

(31

%

$ LIMBO MATERIAL Last edited by Bart Childs on May 22, 1992.
$

\input limbo.sty
\def\title{{\tt Quadratic Equation}}

% begin Bottom of Contents Page macro
\def\botofcontents{\vskip Opt plus 1£il minus 1.5in\rm
{\bigskip\parskipépt plus2pt \parindent20pt

% begin abstract

\vskip0.Sin

\noindent {\bf Abstract. }\it

% The abstract is put right here!

The quadratic equation

§Sa x*2 + bx + c = 088

has two roots (notice the \pm):

$$ x = {{- b \pm \sqrt(b*2 - 4 a c))\over(2 a})s$$
}¢ end abstract

\vfil
\rightline{based on a program by:}
\rightline(Bart S. Childs)
\rightline{subsequently translated into \PASCAL(} by:)
\rightline(D. Dunn}
\rightline(\today)$% today.tex should be preloaded, input it if not
\rightline{\miltime}$% time.tex should be preloaded, input it if not
1% end of Bottom of Contents Page macro

$ This ends the limbo material and begins the WEB
$

@* The quadratic equation. This is one of the great little
steps in learning some of the fine points of mathematics.
The quadratic equation is probably most commonly written as
$Sa x*2 + bx + ¢ = 0S$$

and is well known to have two roots (notice the \pm):

$$ x = ({- b \pm \sqrt{b"2 - 4 a c})\over(2 a}})$$

€ The quantity $b"2 - 4 a c$ is called the discriminant.
If it is negative, then we introduce the unsuspecting student
to the world of (\it imaginary)} and {\it complex) numbers.

@~discriminant@>

@* The program for solving the quadratic equation.
This is a rather straightforward program.
e
P program quadratic;
@<Type declarations@>
@<Variable declarations@>
begin
@<Input parameters@>
@<Calculate discriminant and solutions@>
@<Output the solutionse>
end.

@ Since we are notentiallv handling comnlex numbers, we should declare

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

an appropriate type.

@<Type declarationsé@>=
type
complex = record
real_part: real;
imaginary_part: real;
end; {record}

@ The three obvious variables will now be declared. We will use the

simple declaration of [reall because it is logical.

@<Variable declarationsé>=

var
a, b, ¢ : real;

@ The input of the three parameters is easily done using the
\PASCAL() lIreadlni statement. However, good programming
practice should require that a prompt be issued first.

é<Input parameters@>z
writeln(‘Enter the values of a, b, and c.’);
readln(a, b, ¢);

@ The calculation is small, but worthwhile.
This is a paper for pedagogical reasons and so
we will be a little more detailed.

@<Calculate discriminant and solutions@>=
discriminant := b*b - 4.0%a*c;
real_part := -b/(2.0%*a);
maybe_part := sqrt(abs{discriminant))/(2.0%*a);

@ It is rather obvious that we need to declare these variables.
The additional two variables representing the two parts of the
solution are given somewhat descriptive names.

@<Variable declarationsé>=
discriminant, real_part, maybe_part : real;

@ We will write assign the solutions to two variables,
The discriminant must be checked for sign in order to correctly
assign the solutions.

@<Calculate discriminant and solutions@>=

if (discriminant > 0.0) then begin
x1.real_part := real_part + maybe_part;
x1.imaginary_part := 0.0;
x2.real_part := real_part - maybe_part;
x2.imaginary_part := 0.0;

end (if)

else begin
xl.real_part := real_part;
x1.imaginary_part := maybe_part;
x2.real_part := real_part;
x2.imaginary_part := -maybe_part;

end; lelse)

€ Once again, we need to declare these variables.

@<vVariable declarations@>=z
x1l, x2: complex;

2 We write the solutions, making sure to include the imaginary part

only if it is non-zero.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

@<Output the solutions@>=
writeln (‘The solutions are:’);
write (' x1l = ', xl.real_part:5:2);
if (xl.imaginary_part <> 0.0) then
write (* + ¢, xl.imaginary_part:5:2, ‘i’);
writeln;
write (' X2 = ‘, x2.real_part:5:2);
if (x2.imaginary_part <> 0.0) then
write (' + ‘, x2.imaginary_part:5:2, 'i‘);
writeln;

@* Index.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

(3:)program quaacatic; (4:)type complex=record realpart:real;
imaginarypart:real;end;{:4}{5:}var a,b,cireal;{:5)(8:}

discriminant, realpart,maybepart:real;{:8}{10:}x1,x2:complex;{:10)
begin(6:)writeln('Enter the values of a, b, and c.‘);readln(a,b,c);{:6}
{7:)discriminant:=b*b-4.0%*a*c;realpart:=-b/(2.0%a);

maybepart : =sqrt (abs (discriminant))}/(2.0%*a); {:7}{9:)

if (discriminant>0.0)then begin xl.realpart:=realpart+maybepart;
x1l.imaginarypart:=0.0;x2.realpart:=realpart-maybepart;
x2.imaginarypart:=0.0;end else begin xl.realpart:=realpart;
x1.imaginarypart :=maybepart;x2.realpart:=realpart;

x2.imaginarypart :=~maybepart;end; {:9}(11: }writeln(’'The golutions are:');

write(’ xl = ‘,xl.realpart:5:2);
if(xl.imaginarypart<>0.0)then write(’ + ‘,xl.imaginarypart:5:2,’i‘);
writeln;write(’ x2 = ‘,x2.realpart:5:2);

if(x2.imaginarypart<>0.0)then write(' + ',x2.imaginarypart:5:2,'i‘);
writeln;{:11)end.{:3}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

Quadratic Equation

November 7, 1994

Section Page

The QUAdralic €qUALIONvveet et ettt et e et e i
The progra for solving the quadratic equation 2
Index .o e e e 4

Abstract. The quadratic equation
ax? bz +c=0

has two rvots (nolice the £):
_ -t Vb7 = dac
= 2a
based on 3 program by:
Bart S. Childs
subsequently translated into Pascal by:
D. Dunn
November 7, 1994
16:21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

§1 Quadratic Equation THE QUADRATIC EQUATION 1

1. The quadratic equation. This is one of the great little steps in learning some of the fine points of
mathematics. The quadratic equation is probably most commonly written as

az? +bz+c=0

and is well known to have two roots {notice the +):

_—bx VT = qac
- 2a

2. The quantity b — 4ac is called the discriminant. If it is negative, then we introduce the unsuspecting
student to the world of imaginary and pl b

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

2 THE PROGRAM FOR SOLVING THE QUADRATIC EQUATION Quadratic Equation §3

3. The program for solving the quadratic equation. This is a rather straightforward program.

program guadratic; (Type declarations 4)(Variable declarations 5)
begin (Input parameters 6){ Calculate discriminant and solutions 7){ Output the solutions 11)
end.

4. Since we are potentially handling complex numbers, we should declare an appropriate type.
(Type declarations ¢) =
type complez = record real_part: real;
imaginary_part: real;
end; ({record}
‘This code is used in section 3.

5. The three obvious variables will now be declared. We will use the simple declaration of real because it
is logical. :

{ Variable declarations 5) =

var a,b,c: real;

See also sections 8 and 10.

This code is used in section 3.

6. The input of the three parameters is easily done using the Pascal readin statement. However, good
programming practice should require that a prompt be issued first.
{Input parameters 6) =
writeln("Entergthe values o a, b, and c. °); readin(a,b,c);
This code is used in section 3.

. 7. The calculation is small, but worthwhile. This is a paper for pedagogical reasons and so we will be a
little more detailed.
(Calculate discriminant and solutions 7) =
discriminant — bs b—4.0%a s ¢; real_part — ~b/(2.04 a);
maybe_part — sgri(abs(discriminant))/(2.0 » a);
See also section 9.
This code is used in section 3.

8. It is rather obvious that we need to declare these variables. The additional two variables representing
the two parts of the solution are given somewhat descriptive names.

{ Variable declarations §) +=

discriminant, real_part, maybe_part: real;

9. We will write assign the solutions to two variables. The discriminant must be checked for sign in order
to correctly assign the solutions.
(Calculate discriminant and solutions 7} +=
if (discriminant > 0.0) then
begin z!.real_part — real.part + maybe_part; z1.imaginary.part — 0.0;
12.real_part «~— real_part — maybe_part; z2.imaginary_part — 0.0;
end {if}
else begin z! .real.part — real_part; z!.imaginary.part «— maybe_part; z2.real.part — real_part;
z2.imaginary_part — ~maybe_part;
end; {else}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

§i0 Quadratic Equation THE PROGRAM FOR SOLVING THE QUADRATIC EQUATION 3

10. Once again, we need to declare these variables.

{ Variable declarations 5) +=
z1,22: complez;

11. We write the solutions, making sure to include the imaginary part only if it is non-zero.
{Output the solutions 11) =

writeln(*Thesolutions avre: °); wrile(yuuuX1usy’, ! .real.part :5: 2);

if (z1.imaginary_part # 0.0) then write(y+y,u°, 21 .imaginary.part :5:2, °i*);

writeln; wrile(” uuuux2u=u”, 22 .real_part : 5 : 2);

if (z2.imaginary_part # 0.0) then write(’y#+yy", 22 .imaginary.part :5:2, i°);

wrileln;
This code is used in section 3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

4 INDEX Quadratic Equation §I2

12, Index.

a: 5.

abs: 1.

complez: 4, 10.
discriminant: 2.
discriminant: 7, 8, 9.
tmaginary.pert: 4,9, 11.
maybe_part: 7, 8, 9.
quadratic: 3.

readin: 6.

real: 4, 5, 8.

realpart: 4,17, 8,9, t1.
sri: 7.

write: 1.

wrileln: 6, 11,

z1: 9, 10, 11,

2: 9, 10, 11,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

§12 Quadratic Equation NAMES OF THE SECTIONS 5

(Calculate discriminant and solutions 7,8) Used in section 3.
(Input parameters 6) Used in section 3.

(Output the solutions 11) Used in section 3.

{Type declarations 4) Used in section 3.

(Variable declarations 5, 8,10) Used in section 3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

$%

$ WEB SYSTEM : fweb

% PROGRAM : coolstuff.web

$ AUTHOR : Peter Nuernberg (pnuerné@photon])

% CREATION DATE : Tue Oct 26 09:02:20 1993

117

3

$ LIMBO MATERIAL Last edited by Bart Childs on May 22, 1992.
%

\input limbo.sty

\def\ItemLevelOne{\parindent=20pt

\par \hangindent \parindent \textindent})
\def\ItemLevelTwo{\parindent=20pt

\par\indent \hangindent2\parindent \textindent}
\def\ItemLevelThree({\parindent=20pt

\par\indent\indent \hangindent3\parindent \textindent)
\def\ItemLevelFour{\parindent=20pt

\par\indent\indent\indent \hangindentd\parindent \textindent}
\def\title{(\tt CoolScuff})

t web-mode edits the previous line when creating a new web.

$ Make the previous a comment and edit the next if you don’'t use web-mode.
t\def\title{{\tt ?? I need a Title ??})

% begin Bottom of Contents Page macro
\def\botofcontents{\vskip Opt plus 1£fil minus 1.5in
{\bigskip\parskip6pt plus2pt \parindent20pt

$ begin abstract

\vskip0.5in

\noindent {\bf Abstract. }\it

§ The abstract is put right here!

}$ end abstract

% BC often puts this in as a comment about pre-release versions ...
f\vskip0.5in

t{\vfill\it & comments on anything else 2???

$

$}% end of comments on anything else

\vfil
\rightline{Pete)
\rightline{\today }
\rightline{\miltime }

1% end of Bottom of Contents Page macro

$ This ends the limbo material and begins the WEB

3

% In fweb’s you want an AT-c. AT-C++, AT-n, AT-n9, or AT-Lx at this point
% and be sure to replace 'AT-’ with the obvious character!!!!!

@* Test new macros.

\ItemLevelOne({l.)

Havelock's portrait of Plato‘'s attack upon the poets and Socrates’
tone of voice in carrying on the discussion both lead us to surmise
that he expected the popular reaction to his attack to be hostile.

\ItemLevelOne(2.}
As Havelock writes, ‘‘He thus exhorts us to fight the good fight
against the powers of darkness.‘’

\ItemLevelTwo({2.1)
There are indeed, indications that the rhapsodes and poets
were highly popular, as we shall see in chapter three.

\ItemLevelThree(2.1.1})

The paradox of this popularity is that Plato’s attack
upon the written word, on the other hand, was also a reflection of
popular feeling about the new technology.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132

\ItemLevelFour{2.1.1.1}

First, we find that Aristotle and others
apparently accept Plato’s understanding of the written word as removed
from knowledge,

\ItemLevelTwo({2.2)

Of particular importance in our study is the special
relationship between the maker and his work of art as Aristotle
concieves it.

@* Index.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

(1]

3 WEB SYSTEM : fweb

$ PROGRAM : sample.web

3 AUTHOR : Peter Nuernberg [pnuerné@ephoton]

$ CREATION DATE : Wed Sep 15 07:45:55 1993

$%

%

%t LIMBO MATERIAL Last edited by Bart Childs on May 22, 1992.
%

SLLTLALLLLILLLLLLTILLLLLILLLLLLILLILBEERLRLY

%

% The following code will be added automatically to your “"limbo

% material* starting tomorrow. For now, if you want to produce a list
% of consecutively numbered items like the ones that appear in

% sections 4 and 6 of this file, type in the following lines:

\newcount \ItemCount

\def\BeginItems{
\bgroup\global\ItemCount=0
\parindent35pt \parskiplpt plusipt
\ifvmode \else\par \fi

}% end definition of BeginItems

\def\EndItems{
\ifvmode \else\par \fi \egroup
)% end definition of EndItems

\def\numItem(
\global \advance \ItemCount by 1
\item{\the\ItemCount .}}

)

% OK. Everything else is back to normal. If you don‘t want to have
§ lists, just blow off the above section.

3

SELTLLLLLILLIILLLLILLLBLLILLALIBLLLEBBLL5R1%

\input limbo.sty

\def\title(({\tt Sample Web}}

% begin Bottom of Contents Page macro
\def\botofcontents{\vskip Opt plus 1£fil minus 1.5in
{\bigskip\parskipépt plus2pt \parindent20pt

% begin abstract

\vskip0.5in

\noindent {\bf Abstract. }\it

This program uses the formula:
$$\Biggl[\enspace\sum_{temp=2)}~(z-1){\enspace(z \bmod temp) =
O\enspace) = 0O\enspace\Biggr)s$$

to generate prime numbers.

The notation ${expr]$ is taken from {(\bf Concrete Mathematics} by
Graham, Knuth, and Patashnik.

The convention therein established is that Sf{expr] = 1$ if Sexpr$ is a
true statement.

Otherwise, $fexpr) = 0S$.

}$ end abstract

\vfil
\rightline{Peter J. Nuernberg}
\rightline(\today }$ today.tex should be preloaded, input it if not

\rightline{\miltime }% time.tex should be preloaded, input it if not

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

}$ end of Bottom of Contents Page macro

@*Program Design.

@ Problem Description. .
This program will, given a positive integer, output the five smallest
prime numbers which are greater than or equal to the given integer.

é“prime number@>

@ Program Inputs.

This program only requires 1 input - a positive integer.
Call this integer $x§.

The only condition on x is that $x > 0§.

@ Algorithm,

The basic algorithm has the following steps.
\Beginltems

\numItem(}

Get x from the user.

\numItem{)

If $x \le 0$, print an error message and exit.
\numItem()

Set Sy = xS.

\numitem()

Set Siteration = 1§.

\numItem(}

Find p, the smallest prime number greater than or equal to y.
\numItem()

Output p.

\numItem(}

Increment S$iterations$.

\numItem()

If Siteration > 5%, quit.

\numltem{}

Set Sy = p + 18§.

\numItem()

Goto step S.

\EndItems

8@ Program Qutputs.
This program generates 1 output - a prime number.
However, it generates this output 5 times (see above algorithm.)

@*prime numbere@>

@ Calculations.

Given some number, say z, the following can be used to determine if
2 is prime:

$S\Biggl(\enspace\sum_{temp=2}"{z-1}{\enspace(z \bmod temp) =
O\enspace] = O\enspace\Biggr]$$

\indent\quad This can be done by using the following steps:
\BeginItems

\numItem()

If $2 < 2%, quit and report that z is not prime.

\numItem()

Set Stemp = 2§.

\numItem()

If $temp \ge z§, quit and report that z is prime.
\numItem{}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

135

1f $z \bmod temp = 0$, quit and report that z is not prime.
\numItem{)}

Increment $temp$.

\numItem()

Goto step 3.

\Endltems

@“prime number@>
@.modae>

e Tescxng.

There is only one input to thxs program, so the testing is

straight forward.

The first set of cases will involve ‘‘normal‘‘ inpur.

The first normal case will test-if the input 1 will produce expected
output of 3, $55, 7, $115, and $13§.

The second normal case will test if the input 10 will produce the
expected output of $11§, $13§, 17, 19, and $23§.

The’ second set of cases will involve ‘‘exceptional’’ input.

The first exceptional case will test if the input -1 will produce
the expected error message.

The second exceptional case will test if the input ‘‘A‘’‘’ will produce
a run time error. It is expected that the program will (\bf not} be
able to handle non-numeric input.

(\it These exceptional cases point out that the user must be informed that
non-positive integer input will cause an error message to be printed
and non-numeric input will cause a run-time error.}

€~error@>

@* Index.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136

Sample Web

November 7, 1994

Section Page
Program Designoouiiiiiiniiiiiiiii it 1 |
LY S P 8 2

Abstract. This program uses the formula:

z { (modtemp) =0]=0

temp=2

to generate prime numbers. The nolation [ezpr] is laken from Concrete Mathemnatics by Graham,

Knuth, and Patashnik. The convention therein established is that [expr) = 1 if ezpr is a true
statement. Otherwise, [ezpr} = 0.

Peter J. Nuernberg

November 7, 1994

16:35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

137

§1 Sample Web PROGRAM DESIGN |
1. Program Design.

2. Problem Description. This progeam will, given & positive integer, output the five smallest prime numbers
which ate greater than or equal to the given integer.

3. Program Inputs. This program only requires | input - a positive integer. Call this integer z. The only
condition on z is that z > 0.

4. Algorithm. The basic algorithm has the following steps.
. Get z from the user.

. If £ <0, ptint an error message and exit.

Sety=z.

. Set iteration = 1.

. Find p, the smallest prime number greater than or equal to y.
. Output p.

. lncrement iteration.

. I iteration > 5, quit.

. Sety=p+1.

. Goto step 5.

© OOt A S -

-
o

5. Program Outputs. This program gencrates | output - a prime number. llowever, it generates this
output 5 times (see above algorithm.)

6. Calculations. Given aome number, say z, the following can be used to determine if z is prime:
-1
Z [(: mod temp) =0]=0]
temp=2

This can be done by using the following steps:

1. If z < 2, quit and report that z is not prime.

2. Set temp = 2.

3. Iftemp 2 z, quit and report that z is prime.

4. If z mod temp = 0, quit and report that z is not prine.
5. Increment temp.

6. Goto step 3.

7. Testing. There is only one input to this program, so the testing is straightforward. The first set of cases
will involve “normal” input. The first normal case will test if the input 1 will produce expected output of 3,

5,7, 11, and 13. The second normal case will test if the input 10 will produce the expected output of 11, 13,

17, 19, and 23. The sccond set of cases will involve “exceptional” input. The first exceptional case will test
if the input —1 will produce the expected error message. The second exceptiona! case will test if the input
“A" will produce a run time error. It is expected that the program will not be able to handle non-numeric
input. These excepliona! cases point out that the user must be informed fhaf non-posifive integer inpu will
cause an error message lo be printed and non-numeric input will cause a run-lime error.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138

2 INDEX Sample Veb §8

8. Index.

error: 7.
sod: 6.
prime number: 2, 5, 6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139

$$ amt = \cases {

1000.00 $ if $ GallonsUsed \leq 4000000;\cxr

2000.00 $ if $ 4000000 \leq GallonsUsed \leq 10000000.\cx
) ;

$$

\settabs 6 \columns

\+ & \hfill Acct \# & \hfill Code & \hfill Gallons & \hfill Amount Due & \cr
\+ & \hfill 1234 & \hfill H & \h£ill 200.00 & \hfill 5.10 & \cr

\+ & \hfill 1234 & \hfill H & \hfill 50.00 & \hfill 5.10 & \cr

\+ & \hfill 1234 & \hfill H & \hfill 1200.00 & \hfill 5.10 & \cr

\bye

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CPSC 110H
Fall 1993
Design: Due Thursday, 9/16
Program: Due Tuesday, 9/28
PROBLEM:

The manager of the Croswell Carpet Store has asked you to write a program to
print customers’ bills. The manager has given you the following information:

a. The store expresses the length and width of a room in terms of feet
and tenths of a foot. For example, the length might be reported as
16.7 feet.

b. The amount of carpet purchased is expressed as square yards.

c. The store does not sell a fraction of a square yard.

a. The cost for carpet is expressed as the cost per square yard.

e. All customers are sold a carpet pad at $2.25 per square yard.

f. Sales tax equal to 4 percent is applied to the cost of the carpet
and the carpet pad.

g. The labor cost is $2.40 per square yard.

h. Large volume customers may be given a discount. The discount may
apply only to the carpet cost (before sales tax), only to the pad
cost (before sales tax), only to the labor cost, or to any combination
of the three charges.

i. Each customer is identified by a five-digit number and that number
should appear on the bill.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140

The sample output follows:

Croswell Carpet Store

Invoice
Customer number: 26817
Carpet : 574.20
Pad : 81.00
Labor : 86.40
Subtotal : 741.60
Less discount : 65.52
Subtotal : 676.08
Plus tax : 23.59
Total : 699.67

Write the program and test it for the following three customers.

a. Mr. Wilson (customer 81429) ordered carpet for his family room,
which measures 25 feet long and 18 feet wide. The carpet sells for
$12.95 per square yard and the manager agreed to give him a discount
of 8 percent on the carpet and 6 percent on the labor.

b. Mr. and Mrs. Adams (customer 04246) ordered carpet for their bedroom,
which measures 16.5 feet by 15.4 feet. The carpet sells for $18.90
per square yard and the manager granted a discount of 12 percent of
everything.

c. Ms. Logan (customer 39050) ordered carpet that cost $8.95 per square

yard for her daughter’s bedroom. The room measures 13.1 by 12.5
feet. No discounts were given.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141

142

Lab 3 - College Station Utilities Billing
CPSC 110
Fall 1993
Design: Due Tuesday, 10/5
Program: Due Tuesday, 10/12 - additional 5 points
bue Thursday, 10/14

Note: Extra points for turning an assignment in early will be given
ONLY if the ENTIRE program works correctly!!

PROBLEM:

You‘ve been hired by College Station Utilities to develop a program they can
use to calculate and print bills for water utilities.

ANALYSIS:

The water rates vary depending on whether the bill is for home use, gommercial
use, or industrial use. A code of H means home use, C means commercial use,
and I means industrial use. Any other code should be treated as an error.

For each customer, read the following information from an input file:

Account Number (4-digit integer): columns 1-4
Code (character) : column 6
Gallons of water (real) : columns B8-?

For this particular program, you know that the file will contain 15 customers.
Therefore, a FOR loop may be used. The water rates are computed as follows:

Code H: $5.00 plus $0.0005 per gallon used

Code C: $1,000.00 for the first 4 million gallons used and $0.00025 for
each additional gallon

Code I: $1,000.00 if usage does not exceed 4 million gallons; $2,000.00 if
usage is more than 4 million gallons but does not exceed 10 million
gallons; and $3,000.00 if usage exceeds 10 million gallons

You should produce a report that looks like the following:

College Station Utilities - Billing

Account Gallons Amount
Number Code Used Due

1234 H 200.0 5.10
5678 C 3,000,000.0 1000.00
9012 C 4,500,000.0 1125.00
3847 I 3,500,000.0 1000.00
9832 I 5,000,000.0 2000.00
3892 I 12,000,000.0 3000.00

BILLING REQUIREMENTS:

1. If a code is in error, a message should be displayed and the amount due
set to $0.00. However, you should still print the input information (in
the output procedure).

2. Use a CASE statement for distinguishing the code.

3. Use IF-THEN-ELSE to calculate the amount due based on usage.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Design:

Program:

Note:

PROBLEM:

143

Lab 4 - Caswell Catering and Convention Service
CPSC 110
Fall 1993
Due Thursday, 10/21
Mr. Caswell has agreed to meet with each of the lab sections on
Tuesday, 10/19 to answer any questions you might have. Please
come to class prepared to obtain any necessary information.

Due Thursday, 10/28 - additional 5 points
Due Tuesday, 11/2

Extra points for turning an assignment in early will be given
ONLY if the ENTIRE program works correctly!!

You‘ve been hired by The Caswell Catering and Convention Service to develop a
program they can use to calculate and print customer bills.

ANALYSIS:

The catering rates vary depending on number/type of meals, type of banquet
hall used (if any), day on which catering is done, and discount (if any).

a.
b.
d.
e.
f.
g.
h.
i.
BILLING
1. The
2. Use
3. Use
4. You

The adults may be served Deluxe or Standard meals, dessert included.
Children’'s meals are priced as a fixed percent of adult meals.
Everyone within a given party must be served the same meal type.

There are five banquet halls. The Caswells are considering increasing
the room fees in about six months and this should be taken into
account.

A surcharge is added to the total bill for catering done on certain
days.

All customers will be charged the same rate for tip and tax.

To induce customers to pay promptly, a discount is offered if
payment is made within ten days. This discount depends on the amount
of the total bill.

Bills are printed by party’s last name.
You should produce a report that itemizes the appropriate information.
REQUIREMENTS:

customer information will be read from a file.

a separate procedure for each of the following:

a, compute meal cost;

b. compute room rata;

c. compute surcharge;

d. compute discount;

e. print a statement.

functions to compute the tax and tip.

must pass parameters for this program. No procedure may access a

global variable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lab 5 - The College Station Corner Grocery
CcPSC 110
Fall 1993
Design: Due Tuesday, 11/9

Program: Due Friday, 11/19 - additional S5 points
Due Tuesday, 11/23

Note: Extra points for turning an assignment in early will be given
ONLY if the ENTIRE program works correctly!!

PROBLEM:

Many supermarkets use computer equipment that allows the checkout clerk to
drag an item across a sensor that reads the bar code on the product container.
After the computer reads the bar code, the store inventory data base is
examined, the item's price and product description are located, inventory is
adjusted, and a receipt is printed. Your task is to write a program that
simulates this process.

ANALYSIS:

Your program will need to read (and print) the starting inventory information
from the data file on disk (GROC1.DAT) into an array of records. The data in
the inventory file is written one item per line, beginning with a 2-digit
product code, followed by a 30-character product description, its price, and
the quantity of that item in stock. Your program will need to copy (and
print) the revised version of the inventory to a new data file (GROC.OUT)
after all purchases are processed.

Processing customers’ orders involves reading a series of product codes
representing each person’'s purchases from a second data file (GROC2.DAT).

A zero product code is used to mark the end of each customer order. For each
product purchased, the product price and description are printed on the
receipt. At the bottom of the receipt, you are to print the total for the
goods purchased by the customer.

REQUIREMENTS:

1. The inventory and customer information will be read from a file.
The revised inventory must be written to a file.

2. You must pass parameters for this program. No procedure may access a
global variable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144

145

Lab 6 - The College Station Corner Grocery
CPSC 110
Fall 1993
Program: Due Tuesday, 12/7

PROBLEM:

This is the same problem as that of Lab 5. You‘ve been hired by College
Station Corner Grocery to develop a program they can use to maintain their
store inventory.) ,

ANALYSIS:
Same as that of Lab S.
REQUIREMENTS: You must meet the following requirements:

1. Your main program should consist of a minimum of three procedure calls:
initialize (for files), input, and processing.
Remember, however, the main program should only have procedure calls.
So, NO CODE OTHER THAN CALLS IN THE MAIN PROGRAM.

2. You are required to use the EOF function for reading in the file.

3. You ARE required to pass parameters for this program.

DIFFERENCES: Lab 6 differs from Lab S in the following ways:
1. Instead of using arrays, you should use a linked list of information.

You should create a record type which contains the information in the
input file, as well as a pointer to the next record.

2. You may add information to the list in any manner (i.e., add records
to the front of the list, the middle of the list, or the end of the
list). ‘ :

The input file is the same as that of Lab 5. Just use LABS.DAT.
Save the above program (name the file POINT.PAS) on a 3.5" disk. Turn in the

disk AND printout of the program on the due date specified above. The code
you turn in should adhere to all applicable style standards.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Name

Indicate whether the following statements are True or False (2 points each).

CPSC 110H
Exam 1
September 24, 1993

1.

2.

7.

The control unit is a part of the main I/0 device.

Because of the difficulty of producing programs as compared with
producing equipment, programs are called the hardware and equipment
is called the software.

After a Pascal program is compiled successfully, the source code
can be executed directly.

Files can contain either the data for a program, or the program
statements themselves.

. A syntax error in a program is an error that causes the. program

to produce incorrect output.

A Pascal standard identifier (such as Real and WriteLn) has a
special meaning and should not be redefined.

Constants are used to hold numeric values that may or may not
change during program execution.

Multiple Choice (2 points each):

8.

10.

Which of the following is NOT a high-level computer language?

A) assembler D) Pascal
B) COBOL E) all of the above are high-level languages
C) BASIC

Writing a string literal with a format specification causes the

string to be

A) left-justified in the field, and truncated on the right if the
field is too small.

B} right~justified in the field, and truncated on the left if the
field is too small.

C) left-justified in the field, and truncated on the left if the
field is too small.

D) right-justified in the field, and truncated on the right if the
field is too small.

E) right-justified in the field, and the field is enlarged if it is
too small.

The value of 3 * 4 div (10 mod 4) - 18 is

A) undefined D) -6
B) -12 E) none of the above
Cc) -14

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

147

11. (5 points) A WEB file is built from units called sections. Each section
can have a definition part. Name (or describe) the other two parts that
may be contained in a section.

a.

b.

12. (15 points) Give the GNU emacs key sequence necessary to accomplish each of
the following strokes (i.e., don't give the PC compatible keystrokes):

a. Move to the end of the current line

b. Delete a character forward (under cursor)

c. Save a file on disk (without leaving emacs)

d. Scroll to previous screen

e. Go to the end of your buffer (or file)

13. (10 points) Given a WEB file named PAINT.WEB, list and describe the steps
necessary to be able to execute the Pascal program PAINT.PAS (i.e.,
include a narrative which explains the purpose of each step).

14. (S points} Distinguish between the WEB control codes @* and @ (space).
Explain the purpose of each code. Why would you use one or the other?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148

15. (10 points) What is the output from this program? Put your answers on
the lines below with one character on each dash, being sure to include
any spaces that would appear in the output.

input:
155 13.68 UWYZ 123 ABC
-9 XXX 12

program Fun;
var

A : integer; B : real; C : char;
begin

Read (A, B, C, C, Q);

ReadLn (C, B},

ReadiLn (A);

B := B + (Abs(Sqr(al};
A :=25div8mod 2 + 3 mod 2;
C := Pred(Pred(C));

Write ('The value of A is *, A : 5};

WriteLn (’and B is *, B :5:2);

WriteLn (’'The value of C is ', C);

Write (‘A + Bis ', A + B :5:2);

Write (‘and A * B is ’, A * B :5:2)
end.

Reproduced wi iSSi i
p d with permission of the copyright owner. Further reproduction prohibited without permission

149

16. (20 points) Use your problem-solving skills to state the steps necessary
to solve this problem. Your answer should be in paragraph form. No
Pascal code!

Ima Aggy is quite a traveller and likes to keep track of statistics
regarding her trips. She has hired you to write a program to compute her
average speed, miles per gallon, and the average cost per mile for a
given trip. You may assume Ima can give you the necessary information

to make the calculation. You may also assume Ima fills her car
immediately before and after a trip. {Note: the average speed will be
low because it can include rests.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150

17. (15 points) Write the PASCAL code to solve the problem described in
question #16. NOTE: For test taking purposes, it is not necessary
to document your programs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

151

CPSC 110
Exam 2
October 22, 1993

Name

(2 pts each) Indicate whether the following statements are True or False.

1. 1In counter-controlled loops, the loop-control variable must be
initialized to zero before the loop begins to execute.

2. The simplest way to avoid side effects is to use all variables
globally, since when all the declarations are centrally located,
it is easier to see where individual variables are modified.

3. A variable defined in a block can always be referenced in its
block and any nested within its block.

4. The sentinel value is always the last value added to a sum being
accumulated in a sentinel-controlled loop.

S. When a program starts, but before any Read statements are executed,
EOLN could be true.

6. A variable name defined in a block is hidden from being referenced
outside the block in which it is defined.

7. Give the value of the Boolean expression, assuming that A = True,
B = False, and C = False

C or (A and (B or not C))

{2 pts each) Multiple Choice - select the BEST answer.

8. Assuming that X is 15 and Y is 25, the value of the expression
X= (Y + X -Y) is

A, 15 D. False
B, 25 E. The expression is invalid, since the colon
C. True in front of the egqual sign is missing.

9. If a variable declared locally in a procedure has that same name as
a global variable, then the compiler will

A. issue an error message indicating that a duplicate identifier has
been declared.

B. issue an error message indicating that the name has multiple
meanings.

C. interpret occurrences of the name in the procedure as referencing
the locally declared variable.

D. interpret occurrences of the name in the procedure as referencing
the program variable.

E. none of the above.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

152

___10. Consider the following program:
program What;
var
R, X, ¥, 2, W : Char;
begin
ReadLn(X, ¥, Z, W);

if X <Y then R := X
else R := Y;
if R >2 then R := Z;
if R >W then R := W;
Writeln(R)

end.

what is the program output if the user types runt followed by
RETURN when the program is run?

A. D. t
B. E. none of the above
C

SeR

___11. wWhat does this program segment do?

X := (Nmod 2) = O;
S := 0;
for i := N downto 1 do
begin
if X then S := S + i;
X :=not X
end;

. Add all numbers from 1 to N.

. Add all the numbers from 1 to N-1.
. Add the even numbers from 1 to N.
. Add the odd 1 »bers from 1 to N.

. None of the aiove.

monwoy

Consider the following program segment. Assume that all variables are
of type integer.

t :=0; p:=0; n:=0; s := 0;
ReadLn(x);
while x <> s do
begin
if x> 0thenp :=p +1
elsen :=n + 1;
t:=t + 1;
ReadLn(x)
end;

— 12. The final contents of variable t can best be described as the

A. count of the number of data items read.

B. count of the number of positive data items read.
C. count of the number of negative data items read.
D. sum of all negative data items read.

E. sum of all data items read.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

153

For the next 3 questions, consider the following program skeleton:

program Main;
var
xl

Y, 2 : Integer;

procedure Procl (X1, Y1 :

var
21 : Integer;
procedure Proc2 (Y2 :
var .
22 : Integer;
begin ... end;
begin ... end;
procedure Procd (X3 :
var
23 : Integer;
begin ... end;
begin ... end.

. 13. Proc2 could be called
___14. 23 can be accessed by

___ 15, procl could be called

Short answer:

Integer);

integer);

Integer);

in Procl with the parameter Yl.
all parts of the program.

in Proc3 with the parameters X and Y.

16. (15 points) Write a function that computes the amount of money you owe
for a specified number of parking tickets received at a university.
Assume the charge per ticket is $15 for up to 4 tickets, and a flat fee

of $75 is charged for 5 to 8 tickets.

each ticket received over
statement.

An additional $15 is charged for

8. Use a CASE statement as the decision

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

154

17. (15 points) The real estate tax on resident homes is to be computed as

follows:

Assessed Value

$30,000 or less

$30,000 < assessed value <=

$50,000 < assessed value <=

$80,000 < assessed value <=

assessed value > $120,000

$50,000

$80,000

$120,000

Computed Tax

$800

$800
over

$800
over

$800
over

$800
over

+ 1% of assessed value
$30,000

+ 1.2% of assessed value
$30,000

+ 1.4% of assessed value
$30,000

+ 1.5% of assessed value
$30,000

Write the statement(s) necessary to calculate the real estate tax.
Assume that Value and Tax have been declared as Real variables.
Use an IF statement and do not make any unnecessary tests. Any
value less than $0 should be flagged as an error.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

155

18. (15 points) What is the output from this program?

program Strange;
var
Who, Where : Integer;
procedure Stranger (var Who : Integer; What : Integer);
begin
Who := 3 * What;
What := 2 - Who;
WriteLn (Who:4, What:4)
end;
procedure EvenStranger (What : Integer; var Where : Integer);
begin
wWhat := What + 5;
Stranger (wWhere, What);
WriteLn (What:4, Where:4)
end;
begin
Who := 2; where := 4;
Writeln (Who:4, Where:4);
EvenStranger (who, Where);
WriteLn (Who:4, Where:4);
Stranger (Where, Who};
Writeln (Who:4, Where:4)
end.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

156

19. (25 points) Use your problem-solving skills to state the steps necessary
to solve this problem. Your answer should be in *problem-solving* form.
No Pascal code!

whatsamata Mining has hired you to write their payrcll program. They
give you the following information:

*» employees are paid hourly and will receive overtime for over 40
hours,

* federal income tax is based on gross salary; however, there is a
fixed dollar amount deduction per dependent before the tax is
calculated,

* social security is based on gross,

*» if an employee works in the city office, there is a city tax
which is a fixed percentage of gross,

* if an employee is a union member, dues are a fixed percentage
of gross.

The president of the company would like to see information for each
employee, as well as totals for the company. She is particularly
interested in the number of hours of overtime and the amount of
payroll money which is spent on overtime versus regular time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

157

CPSC 110
Exam 3 - Part 1
November 19, 1993

Name

(25 points) Your computer science instructor wants you to write a program
which will grade the final exam for the course and calculate the final
grade for each student.

The final exam consists of 80 true-false and multiple choice questions.
The results of the exam have been coded for input to the program. Your
instructor would like to see the following for the exam:
* each student‘’s score and grade;
* the number of students taking the exam;
* exam statistics, including low score, high score, median score, and
average.

In addition to the final exam, the instructor will provide the necessary
scores for each student in order for you to calculate the final grades for
the course. The final course grade is made up of 3 tests (at 15% each),
a homework grade {which is 35% of the grade), and the final exam. The
final grades will be calculated as follows:

* A - the grade is at least 1 standard deviation above the average;
- the grade is at least 1/2 standard deviation above the average;
- the grade is at most 1/2 standard deviation below the average;
- the grade is at most 1 standard deviation below the average;
- otherwise.

» 2 e »
mooOow

Use your problem-solving skills to state the steps necessary to solve
this problem. Your answer should be in *problem-solving* form.
NO Pascal code!

Input:
1) exam key
2) student ID or name
3) students answers to final exam
4) test scores (3)
5} homework grade

Output:
1) Final exam - 2) Final grades -
a) student ID or name a) student ID or name
b) score on final exam b) final grade in course

c) grade on final exam

d) number of students taking exam
e) low score on the exam

£} high score c¢n the exam

g) median score on the exam

h) average score on the exam

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

158

Algorithm development :
1) Read and store the exam key.

2) For each student, determine the final exam grade and collect
statistics -
a) read student answers;
b) compare answers to key and determine the number correct;
c) calculate exam score = number correct / number of questions;
d) calculate exam grade = if score >= 90, then ‘A’
if 80 <= score < 90, then *B’
if 70 <= score < 80, then ‘C’
if 60 <= score < 70, then ‘D’
if score < 60, then ‘F‘;
e) print the student's ID, score, and grade;
f} count the student;
g) if score < low score, then low score;
h) if score > high score, then high score;
i) accumulate the score (for average);
j) store the score (for median).

3) Calculate the exam average = total of scores / number of students.

4} Determine the median score by arranging the scores in order and
selecting the middle score.

5) Print the number of students taking exam, low score, high score,
median score, and average.

6) For each student, determine the final grade in the course -
a) read student test scores and homework grade;
b} calculate test score = (testl + test2 + test3) / 3 * 0.45;
c) calculate homework score = homework grade * 0.35;
d) calculate final exam score = final exam * 0.20;
e) calculate final score = test score + homework score + final exam
score;
£) count the student;
g) accumulate the score (for average).

7) Calculate the class average = total of scores / number of students.
8) Calculate the standard deviation = formula given in class.

9) Calculate final grade = if score >= 1 * standard deviation +
average, then ‘A’ else
if score »>= 0.5 * standard deviation +
average, then ‘B’ else
if score >= average -
0.5 * standard deviation, then 'C' else
if score >= average -
1 * standard deviation, then 'D’ else
if score < average -
1 * standard deviation, then ‘F’;

10} Print the student'’'s ID, score, and grade.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Name

CPSC 110
Exam 3 - Part II
November 22, 1993

True/False (2 points each):

Consider the following declarations as you answer questions 1 -~ 4 and
determine whether each assignment statement is legal (true) or not (false}.

1.
2.
3.
4.

9.
10.

type
Line = array [1..50] of Char;
Last = array('A’'..'Z'} of Integer;
Name = string(10];

var
AList, BList : Line;
CList : array (1..50} of Char;
LastName : Last;
MyName : Name;
AChar : Char;
I : Integer;

AList([30) := CList(50};
AList := CList;
WriteLn (Name) ;

LastName(‘Q’] := AChar;

. The following double use of the identifier A is legal.

type R = record
A, B : real
end;
var A : integer;

If A is of type array (1..5, 1..10) of Boolean then the expression
Al4,2] refers to element A row 2 and column 4.

. A recursive procedure must have only one stopping case, and all

other cases must reduce to that stopping case in a finite number
of steps to avoid infinite recursion. .

. The elements of an array must be accessed one at a time, from the

beginning to the end.
The largest possibie dimension of a multidimensional array is three,

If the expression A{i].B is legal then A must be a one-dimensional
array of records.

Multiple Choice (2 points each):

11. Problems which lend themselves to recursive solution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A) have one or more simple cases that can be used to terminate
repetition.

B) can be reduced to one or more simpler cases of the same
problem.

C) can be reduced to one of the simplest non-recursive cases in
a finite number of steps.

D) all of the above.

E) none of the above.

159

160

12. which of the following is not a correct use of a field selector,
given the declarations below?

type
Disc = record
title, artist : string[20];
year : 1900..2000;
RPM : 16..78
end;
var
PhonoRecord : Disc;
Character : char;

A) PhonoRecord.RPM := 33;

B) Character := PhonoRecord{4).Artist;
C) PhonoRecord.Year := 1958;

D) PhonoRecord.Title[l} := 'Z';

E) All of the above are legal.

For the next two questions assume the following declarations:

type

Range = 1..Max;

ArrayType = array {Range] of Integer;
var

A : ArrayType;

I, J, Temp : Integer;

13. What is the effect of the following program segment?

Temp := 0;
for I := 2 to Max do
if A(i] > A[1) then
Temp := Temp + l;

A) Reverses the numbers stored in the array.

B) Puts the largest value in the last array position.

C) Counts the number of elements of A greater than its first
element.

D) Arranges the elements of the array in increasing oxrder.

E) None of the above

14. what is the effect of the following program segment?

for I := 1 to Max - 1 do
if A{i] > A[i + 1] then
begin
Temp := Af{i);
A(i) := Afi + 1);
Afi ¢ 1) := Temp
end;

RA) Reverses the numbers stored in the array.

B) Puts the largest value in the last array position.

C) Counts the number of elements of A greater than its first
element.

D) Arranges the elements of the array in increasing order.

E) None of the above.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

161

____15. Which of the following is syntactically identical to the declaration
type A = array (1..4, 'a‘..’z'] of Integer?
A) array {1..4) [‘a‘..‘z’] of Integer;
B) array [‘a‘’..’z', 1..4) of Integer;
C) array ({1..4] of array (‘a’..‘z’'} of Integer;
D) array {‘'a‘..’z'] of array (l..4] of Integer;
E) none of the above.

const Top = 10;
type namestring = packed array ([l1..10] of char;
index = 1..Top;
recentry = record
name : namestring;
quantity : integer;
price : real

end;
entrylist = array [index] of recentry;
var A : entrylist; i, j : integer; max : real;

16. Given the above declarations, Which section of code below will print
only the name of the item with the highest price in the inventory?

a) for i := 1 to 10 do
if Afi).price >= A[i+l}.price then
Write(A{i] .name);

B) max := A[l].price;
joi=1;
for i := 2 to 10 do
if A{i].price > max then
max := Afi}.price;
S BT ¥
Write(A[j].name);

C) max := A(l].price;

j o= 1;

for i := 2 to 10 do
if A[i).price > max then begin

max := Afi).price;

j =i
end;

Wwrite(A(j).name);

D) i := 1;
max := Af{i).price;
j o= i;

while i < 10 do begin
if Ali}.price > max then begin
max := Ali).price;
jo:= i
end
end;
Write(A[3].name);

E) two of the above sections of code will perform correctly.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

162

17. What is written by the following program?

program num;
var X : integer;
function ampersand (n : integer) : integer;
begin
if n = 0 then
ampersand := 0
else
ampersand := (n mod 3) + ampersand (n - 1}
end;
begin
X := 8;
WriteLn{ampersand(x))
end.

A) 9 D) 8
B) 2 E) none of the above
c)y 7

18. Assuming that type Flavor = (Chocolate, Vanilla, ButterBrickle,
Spumoni) and that the value of variable F (type Flavor) is Vanilla,
what is the value of Ord(Succ(Succ(F)))?

ButterBrickle
Spumoni
3

4
undefined

moowmy>

19. Given that X, Y, and 2 are records of different types with fields
of different names, which expression has the same effect as the
one shown below?

with X do
with ¥ do
with 2 do

with [X..2] do
with X, Y, 2 do
with X.Y.2 do

with X or Y or Z do
none of the above

moOw>»

20. Consider the following code

:i= 2 to N do
AiT]l >= A[F] then
F =1

which item best describes the operation being performed:

A. Rearrange the first N components of the array A in descending
order.

B. Rearrange the first N components of the array A in ascending
order.

C. Place the largest component of the array A in position N.

D. Compute the value of largest component in array A.

E. Compute the subscript of the last occurrence of the largest of
the first N components of the array A.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

163

Short answer:
21. (6 points) Given the following declarations, write the
Pascal code necessary to initialize the elements of the array in
column-major order to the value * ‘, Declare any additional variables
you may need.

type
Color = {(Red, Orange, Yellow, Green, Blue, Violet);
Texture = (Satin, Velvet, Coarse, Rough)};
ArrayType = array (Color, Texture] of Char;

var
SeeFeel : ArrayType;

(10 points) Write a Pascal procedure with 3 parameters, a 2-dimensional
array of reals and two integers. The procedure is to return, via the two
integer parameters, the row and column number of the largest real number
in the array. You may assume that there are no duplicate values in the
array. The following declaration appears in the main program:

type MatrixType = array(l..50,

22.

1..20]) of Real;

procedure FindBiggest (

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

164

23. (4 points) Study the following type and variable declarations and
then write statements which modify the variable Applicant as described

below.
type
string20 = string{20];
TwoChars = stringl2];

Relation = (Mother, Father, Son, Daughter, Sister, Brother};

NameRecord = record
First : string20;
Middle : char;

Last : string20

end;

AddressRecord = record
Street, City : string20;
State : TwoChars;

Zip : string(5)

end;

PersonType = record
Name : NameRecord;
Address : AddressRecord

end;

DependentRecord = record
Who PersonType;

Age : 1..99;
Rel : Reiation

o ee

end;
Dossier = record
Person, Spouse : PersonType;
NumDependents : 0..10;
Dependent : array {1..10) of DependentRecord
end;
var
Applicant : Dossier;

a) Set the applicant’s last name to Smith.

b} Set the spouse’s state to TX.

c) Set the thira rlependent’'s first name to Patrick.

d) Add one to the second dependent's age.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

165

(5 points) Declare a data type which could be used to hold information
about a student -in a class. The information that your record must hold
is student name (15 characters), social security number, three test
scores (integers), six lab scores, the final exam score, the average of
all the scores, and the overall course grade (A, B, C, D, or F).

24.

(S points) Now declare a data type which contains the above information
for the entire class. It must hold class number (an integer), the
instructor‘'s name (15 characters), information about 100 students, the
overall class average, the highest average in the class, the lowest
average in the class, and the median average in the class.

25.

{S points) Declare a type which contains information about all of the
classes in the department. It should hold department name, number of

faculty, and the above information about all of the classes. Assume that
there are 50 classes.

26.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Name

CPSC 110K — Fall 1493
FINAL EXAM

The final exam is worth 200 points. Each of the true/false and multiple choice questions
will be weighted 2 points, giving a total of 160 points. The short answer questions will
be worth the remaining 40 points.

Indicate whether the following statements are true or false.

1.

2.

10.
11.
12.
13.

14.

15.
16.

17.

18.

19,

When a program begins to execute, the contents of the memory cells it uses are
initially empty.

Semicolons must be inserted after every program statement occurring between the
begin and end statements of the program body.

Before a new value can be stored in a memory cell, a program must execute a
statement to erase its former contents.

More than one Pascal statement can be placed on a single line.

constants can be declared in procedures, but variables must be declared in the
main program.

If A and B are the names of procedures declared in a Pascal program, then the
statement sequence begin A; B; A end is legal in the program body.

A nested if statement occurs when the true or false statepent of an if statement
is itself an if statement.

If A and B are arrays of the same data type, then the statement A := B; copies
each element of B to the corresponding element of A.

After the last statement of a procedure executes, control is transferred to the
next declared procedure.

The Reset procedure resets EOF and EQLN to false.
Files should never be closed explicitly in Turbo Pascal.
The string °ABCE+D+-°* is a legal postfix expression.

h variable name defined in a block is hidden from being referenced outside the
block in which it is defined.

A recursive solution to a problem of size N, is always reducible to a problem
of size N - 1.

Blaise Pascal developed the Pascal language.

When a variable of type “Real is created by the New procedure, it can thereafter
hold a Real number.

All pointers to a node that is returned to the heap (disposed) are automatically
reset to nil.

If the Head pointer to a linked list is passed as a value parameter to a
procedure, then a copy of the list is made in the procedure‘'s local data area.

The condition in the while statement is tested at the end of each pass.

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33.

3s5.

37.

20.

22.
23.
24.

25.

26.

27.

28,

29.
30.

31.

32.

34.

36.

38.

39.
40.

1f P, Q, and R are pointer variables, then the statements below interchange the
contents of the nodes pointed to by P and Q.
Pt = Q% Q% 1= P

wWhile loops that iterate zero times indicate improper variable initialization
or improper formulation of the while condition.

Give the value of the Boolean expression, assuming that A = True, B = False,
and C = False.

not (B and C) or A
Cor Aand B and C

not B or (C and not A)

If X = 3, then the Boolean conditjon X > 2 and ¥ < 4 is syntactically correct.
If you define a variable X to be of type 1..8, and if the number S was typed {n
response to the statement Read (X), then the computer will prompt the user to
enter a new value for X.

The expression True < False is false.

Each of the types Integer, Real, Char, and Boolean is an ordinal type, since
each has a numerical representation in the computer's memory.

Enumerated type variables can not be read or written directly.

The ordinal value of the third value listed in the declaration of an enumerated
type is 3.

If X is a variable of the enumerated type (Apples, Bananas, Oranges) and has the
value Bananas, then the expression X < Oranges has value

A variable declared of enumerated type (0,1,2,3.4,5,6,7,8,9) may be used to
store an Integer in the range 0 to 9

The Read procedure, with numeric variables, skips all non-numeric characters
until it comes to a ‘*+°', '-', digit, or <eof>.

Procedures can be called several times from several different places in the
program, since the program keeps track of where control is to return atter a
procedure finishes its last step.

The field selector in a statement consists of the record variable name, followed
by a period, followed by a field jdentifier from that record type.

This assignment statement is valid if all variables are defined as type integer:
A=B +C.

The sentinel value is always the last value added to a sum being accumulated in
a sentinel-contrulled loop.

An enumerated type variable can be a loop control variable for a counter-
controlled loop.

The Ord function may be applied to enumerated Cype variables.
The condition in the while statement is tested at the end of each pass.

The New statement must be executed before a pointer variable can be used.

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

—_ d2.

—_— 43,

— 46.

44.

45.

statements in a high-level language are converted to statements in machine
language by a loader.

A syntax error in a program is an error that causes the program to produce
incorrect output.

If the value of X is 735, the statement WriteLn (X :2) will not cause the number
to be displayed incorrectly.

The insertion of comments in a program neither causes the program to run more
slowly, nor causes the object code to take up more space.

In an arithmetic expression, without any parentheses, the computer always
performs the leftmost operation first.

Multiple Choice - Select the Best Answer.

- 47,

50.

48.

49.

S1.

wWhich of the following is not an advantage of a high-level language?
a. It is easier to use than machine language.

b. Its statements resemble English.

c¢. It is portable.

d. Memory can be referenced symbolically.

e. 1t is easy for the machine to understand.

Which of the following statements calls procedure XYZ?

a. Call XYZ; d. program ABC (XYZ);
b. procedure XYZ; e. none of these
c. XYZ;

If a computer's collating sequence places upper-case letters in consecutive
ordinal positions, then Ord('F*') - Ord(Succ('A‘'}) =

a. Not defined d. 'D*

b. 5 e. 'B'

c. 4

Which does not represent a Pascal reserved word?

a. WritelLn d. begin

b. program e. All are reserved words.
c. var

The effect of the following program segment can best be described as
if X > Y then 2 := X;
it X = Y then 2 := 0;
it X < Y then 2 := Y;

a. The smaller of X and Y is stored in 2.

b. The larger of X and Y is stored in 2.

c. The larger of X and Y is stored in Z, unless X and Y are equal, in which
case 2 is assigned zero.

d. The larger of X and Y is stored in Z, unless X and Y are not equal, in
which case 2 is assigned zero.

e, None of tii» above.

A unique value that can be used to terminate a loop containing & ReadLn
statement is called a

terminal value.

sentinel value.

loop control variable.

. input value.

loop termination value.

sooTD

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

169

53. which of the following types cannot be the type of a counter variable in a for

loop?
a. Integer d. Enumerated
b. Real e. Boolean
c. Char
— 54. If N is an Integer variable and N >= 10, then the expression whose value is N's
tens digit (for example, 3 if N = 436) is
a. N div 10 mod 10 d. N mod 100
b. N - 10 e. N mod 10 mod 10
c. N-9

SS. What does this program do?

§:=20; I :=1;
repeat
1= S + I;
I:=1+1
until I >= N;

Add all numbers from 1 to N.

Add all the numbers from 1 to N-1.
Add the even numbers from 1 to N.
Add the odd numbers from 1 to N.
None of the above.

[N

S6. Which of the following variable names are invalid?

i. Write ii. abeD3 iii. var iv. John's
v. Scount vi. abcte vii. crazy8s

a. i, ii, #ii, v, vi

b. i, i, v, v, vi

c. iii, v

d. i, {ii, iv, v

e. iii, iv, v, vi

s7. The if statement

if 13 < 12 then WriteLn {‘'never*)
else WriteLn (‘always')

a. Writes ‘never'.
b. Writes ‘always‘’.
c. Won't compile since 13 is not less than 12.
d. Causes a run-time error since 13 is not less than 12.
e. Prints nothing since 13 is not less than 12.
58. Which of the following types cannot be the element type of an array?
a. Integer d. Booclean
b. Real e. None of the above

c. Enumerated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9.

60.

61.

62.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vihat would be printed by the following program? (The symbol °‘#‘ stands for one
blank character.)

program Formats:

var
A, B :Real ;

begin
A := 37.56
B :=101.117;
Write (*Is it*', A :6:1, B :9:4):
WriceLn ('?')

end

a. Iskit##37.6#101.1170?

b. IsWHit###37.644101.1170?

c. IsNic##37.54101.11707

d. Issit#u37.64101.1177

@. None of the above

which of the types listed below can be returned as the value of a user-defined
function?

a. Integer d. Enumerated
b. Real e. All of these
c. Char

Given the binary tree below, what is the order in which the nodes would be
visited during a preorder traversal?

[
/ \
A F
\ / \
B E G
/
D
a ABCDEFG
b BADEGFC
c CARBFEGD
d CABFEDG
e None of the above

ich of the following can not be an element type of a two-dimensional array?
another two-dimensional array

a hierarchical record

a Real

an enumerated type

None of the above

pROUEZ

170

171

Consider the following program:
program HowiboutThis (input,output);
type
X = (A, B, C, D, 2}
var
R,S : X;
T : Integer;
begin
T = RA; s

W
0

:= 0; R
while R <> S
begin

R

do

Succ(R);
T := Pred(T)
end; {while)
Writeln (T); (question 63)
WriteLn (Ord(s)) { question 64 }
end.

63. According to the standard rules for Pascal, what value will be printed by
wWriteLn (T) ?

a. 0 d. 3
. 5 e. 2
c. =2
— 64, According to the standard rules for Pascal, what value will be printed by
writebn (Ord(s)) ?
a. 2 d. 0
b. A e. 3
c. 1

Assume the following declaratijons:
type

Range = 1..Max;

ArrayType = array {Range] of Integer;
var

A : ArrayType;

I, J, Temp : Integer;

65. What is the effect of the following program segment?

Temp := 0;
for I := 2 to Max do
if A[I) > A[1] then
Temp := Temp + 1;

Reverses the numbers stored in the array.

Puts the largest value in the last array position.

Counts the number of elements of A greater than its first element.
Arranges the elements of the array in increasing order.

None of the above

TQANUY

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

172

66. what is the value of the assignment A := F{(3,3,4) ?
function F (A4,B,C : Integer) Integer;
var
I, J, K, L : Integer;
begin (F)
L := 0:
tor I :=1 to A do
begin
for J := B downto 4 do
L :=L + J;
for K := 3 to € do
L :=L+ Kk
end; (for I)
F:=1L
end; (F)
a. 28 d. 33
b. 30 e. None of these
c. 21
— 67, The emacs key binding for scroll to next screen is:
a. C-n d. Cc-p
b. M-n e. none of these
c. C-v
. 68. The emacs key binding for search forward is:
a. M-8 d. C-s
L. c none of these
(o

c.

-g e.
-r

Consider the following declarations:

type
Fruit
var
X :
69.
a.
b.
c.
d.
e.
. 70. Th
a.
b.
c.

The statement X(4, Orange] :=

= {Apple, Orange, Kiwi, Banana);

array {1..5, Fruit] of integer;

12 causes

the value 12 to be placed in the second column of the fourth row of X.
the value of 12 to be placed in the second row of the fourth column of X.
a compilation error.

run-time error, atter compiling correctly.

none of the above.

e person who is known as the first programmer is:

Charles Babbage d.
Herman Hollerith e.
Ada Augusta Lovelace

Blaise Pascal
Niklaus wWirth

Use the function below:

begin {Wow}

£f M < 10 then
if N < 10 then Wow := M + N
else Wow := Wow(M, N - 2) + N
else Wow := Wowi(M - 1, N) + M
end; (Wow)
— 11, what is the value of Wow(12,15)?
a. 84 - 18
b. 90 e. none of these
c. 75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77.

76.

173

The terminating condition is:

a. M and N equal to 10 d. M less than 10
b. M and N less than 10 e. N less than 10
c. M or N less than 10

which of the following types cannot be the subscript type of an array?
a. Integer d. Boolean

b. Real e. None of the above

c. Enumerated

The person who was responsible for the Difference Engine and the Analytical

Engine is:

a. Charles Babbage d. Blaise Pascal
b. Herman Hollerith e. Niklaus Wirth
c Ada Augusta lLovelace

jich statement is true about recursion?
Recursion is more efficient than iteration.
kecursion requires less overhead than iteration.
Recursion can specify more natural solutions for some problems than
iteration.
Recursive solutions are more complex than iterative solutions.
None of the above.

P oUo g

For what exact range of values of variable X does the following code segment
print ‘Cc*'?

it X <= 200 then
if X < 100 then
if X <= 0 then VriteLn ('A')
else Writeln ('B')
else WriteLn (‘'C')
else WriteLn {'D')

a. 0 < X <100 d. X
b. X <=0 e. 1l
c. 100 <= X <= 200

0
X <= 200

The function below can best be described as

function What (Head : Ptr; X : Integer) : Ptr;

var
Temp : PLr;
begin {What)
What := nil;
while Head <> nil do
begin
if Head”.Data = X then
What := Head;
Head := Head’ .Link
end (while)
end; {What)
a. returning all of the addresses in the list where X was found.
b. returning a pointer to the first occurrence of X in the list, and nil if
X does not occur.
c. returning a pointer to the last occurrence of X in the list, and nil if
X does not occur.
d. counting the number of occurrences of X in the listc.
e. none of the above.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

— — 78. Which of the following types cannot be the element type of a one-dimensional

array?

a. Integer

b. Real

c. Enumerated

— 19, ‘The correct statements to
list Head is:

a. New {Tamp);

Temp” .Data := 3;
Temp”.Link := Head;
Head := Temp;

b. New (Temp);
Temp”.Data := 3;
Head := Temp;
Temp~.Link := Head;

c. New (Temp);
Temp”.Data := 3;
Temp”.Link := Head".Link;
Head := Temp;

d. New (Temp);
Temp”.Data := 3;
Temp~.Link := Head".Link;
Head”.Link := Temp;

e. none of the above

Given the declaration

TyPp
D

L

var

e
ate = record
Month :

Day : 1.

end; (Dat
ddress = record
Street,
end; (Add
EmpRec = record
StartDa

Home :

Salary :

end; {EmpR

Enployee : EmpRe

a.
b.

c.

a.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with Employee

WriteLn (Home.Street, StartDate.Month};
with Employee, Home, StartDate do

WriteLn (St
with Employee

1..12;
.31
e}

city, : string{30];

ress)

te : Date;
Address;
Real

ec}

ci

80. Which of the following is not equivalent to the others?
Writeln (Employee.Home.Street,Employee.StartDate.Month);

do

reet, Month);
do

with StartDate do

with

Home do

WriteLn (Street, Address);
. All of the above are equivalent.

e. None of the above

insert a node containing 3 at the front of the linked

174

175

81. (12 points) The administration at a college keeps & master file, on disk, of all
current and former students. There is a record for each individual, but different
information is kept depending on whether the person is current or former. The
information for a current student is name, social security number, school address,
home address, GPA, and number of library books currently checked out. The information
for a former student is name, social security number, address, and total amount of
money contributed to the college. After each graduation, the administration of the
college wants to update the master file with a transaction file, also kept on disk,
that contains a record for each student that just graduated. Assume that both files
are Kept sorted by social security number. Use your problem-solving skills to design
a program to perform the necessary update.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

176

82. {d points) Consider this program:

1. program test;

2. type

3. intarray = array([l..10) of integer;
4. var

S. A : intarray;

6. i : integer;

7. procedure change (...);

8. begin

9. i:=5;

10. Afi) := 20

11. end;

12. begin

13. for 1 := 1 to 10 do A{i] := i;
14. i := 3;

15. change(A,i);

16. write{A[i])

17. end.

wWhat is the output of this program when line 7 is equal to each of the following:

a) procedure change(var A : intarray; var i : integer);
b} procedure change(var A : intarray; i : integer);

c} procedure change(h : intarray; var i : integer);

d) procedure change(A : intarray; i : integer);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

177

83. {4 points) Consider this program:

1. program test;

2. type

3. ptr = “node;

4. node = record

S. data : integer;
6. next : ptr

7. end;

B. var

9. p : ptr;

10. n : node;

11. procedure change(...};
12. begin

13. p~.data := 3;

14. newi{p);

15. n.next := p

16. end;

17. begin

18. n.data := 1;

19. new{p):
20. p~.data := 2;
21. p~.next := nil;

22. n.next := p.

23. change (n,p)
24. end.

This problem asks you to draw diagrams indicating space allocation. Here are the
rules: Draw a box for each location that is currently allocated to the program and
label it with its name or names. Put the current value of the location inside the
box, using *?" for uninitialized and arrows for pointers.

Draw a space allocation diagram for the point in the program immediately after line
23, tor each of the following choices tor line 11. It will probably be helpful if you
start by drawing the diagram for the point just before line 23. You may draw the
diagrams in the blank space above, to the right of the progran. (Be sure to label

them.)

a) procedure change{var n : node; var p : ptr);
b) procedure change(var n : node; p : ptr);

c) procedure change(n : node; var p : ptr);

[-}] procedure change(n : node; p : ptr);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84. (5 points) Give the web-mode key bindings for the following commands.
a) goto section #
b) which section
C) goto hext section
d} count sections
e) kill emacs from web-mode
85. (15 points) For this part of the test, use the attached copy of primes.web to answer

the following questions.

a)

b}

[}

d)

e)

f)

9)

h)

i)

N

Give the name of section 8.

in what section(s) is °®Other constants of the progran® defined? In what
sections is it used?

In what section does the chapter ®Generating the primes® begin?

Chapter 5 begins in section _____ ___ and goes through section

In what modules is the variable °page-offset® used, and what type is it?
what sections are used in section 14?

How many sections does primes.web have?

How many chapters does primes.waeb have?

In which section(s) does the programmer discuss the format of the output?

wWhat section(s) need(s) to be modified if you want to print the first 500 prime
nunbers?

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

179

PRINES

(March 31, 1986)
Section Page

Prinling primes: An example of NEBccouviiiniiiiiiiiiiiiiiniiie e, 1 1
Plan of the Programvnvvntiitnetennneennaenaeinaeroreeiaaocsnns .. 3 2
The output phase Ceeneen Ceereen. e e e .5 3
Generating the PrMIESovvvurnecrennetniereeaiereennaiieiiiianinns 11 5
The inner Joop . «.vvvrnirii i i .22 7
T S S 27 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

180

§1 PRIMES PRINTING PRIMES: AN EXAMPLE OF WEB]

1. Printing primes: An example of WEB. ‘The following program is essentially the same as
Edsger Dijkstra’s “first example of step-wise program composition,” found on pages 26-39 of his
Notes on Structured Programming,® but it has been translated into the WEB language.

[Double brackets will be used in what follows to enclose comments relating to WEB itself, because
the chief purpose of this program is to introduce the reader to the WEB style of documentation.
WEB programs are always broken into small sections, each of which has a serial number; the present
section is number 1.}

Dijkstra’s program prints a table of the first thonsand prime numbers. We shall begin as he
did, by reducing the entire program to its top-level description. [Every section in a WEB program
begins with optional commentary about that section, and ends with optional program tert for the
section. For example, you are now reading part of the commentary in §1, and the program text for §1
immediately follows the present paragraph. Program texts are specifications of PASCAL programs;
they either use PASCAL language directly, or they use angle brackets to represent PASCAL code
that appears in other sections. For example, the angle-bracket notation ‘(Program to print ...
numbers 2)’ is VEB's way of saying the following: “The PASCAL Lext to be inserted here is calied
‘Program to print ... numbers’, and you can find out all about it by looking at section 2.” One of
the main characteristics of WEB is that different parts of the program are usually abbreviated, by
giving them such an informal top-level description.)

{ Program to print the first thousand prime numbers 2)

2. This program has no input, because we want to keep it rather simple. The result of the program
will be to produce a list of the first thousand prime numbers, and this list will appear on the output
file.

Since there is no input, we declare the value m = 1000 as a compile-time constant. The program
itself is capable of generating the first m prime numbers for any positive m, as long as the computer’s
finite limitalions are not exceeded.

[The program text below specifies the “expanded meaning” of ‘(Program to print numbers 2)’;
notice that it involves the top-level descriptions of three other sections. When those top-level
descriptions are replaced by their expanded meanings, a syntactically correct PASCAL program
will be obtained.}

(Program to print the first thousand prime numbers 2) =
program print_primes(output);
const m = 1000; (Other constants of the program s)
var (Variables of the program 4)
begin (Print the first m prime numbers 3);
end.
This code is used in section 1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

181

2 PLAN OF THE PROGRAM PRIKES §3

3. Plan of the program. We shall proceed to fill out the rest of the program by making
whatever decisions seem easiest at each step; the idea will be to strive for simplicity first and
efficiency later, in order to see where this leads us. The final program may not be optimum, but we
want it Lo be reliable, well motivated, and reasonably fast.

Let us decide at this point to maintain a table that includes all of the prime numbers that will be
generated, and to separate the generation problem from the printing problem.

[The VEB description you are reading once again follows a pattern that will soon be familiar: A
typical section begins with comments and ends with program text. The comments motivate and
explain n&eworlhy features of the program text.]

{Ptint the first m prime numbers 3) =
(Fill table p with the first m prime numbers 11);
(Print table p 8)

This code is used in seciion 2.

4. How should table p be represented? Two possibilities suggest themselves: We could construct
a sufficiently large array of boolean values in which the kth entry is true if and only if the number &
is prime; or we could build an array of integers in which the kth entry is the kth prime number. Let
us choose the latter alternative, by introducing an integer array called p{l .. m].

In the documentation below, the notation *p[k]’ will refer to the kth element of array p, while 'p,’
will refer to the kth prime number. If the program is correct, p[k] will either be equal to p; or it
will not yet have been assigned any value.

{Incidentally, our program will eventually make use of several more variables as we refine the
data structures. All of the sections where variables are declared will be called ‘(Variables of the
program 4)’; the number ‘4’ in this name refers to the present section, which is the first section to
specify the expanded meaning of ‘(Variables of the program)’. The nole ‘See also ...’ refers to all of
the other sections that have the same ton-level description. The expanded meaning of ‘(Variables
of the program 4)’ consists of all the program texts for this name, not just the text found in §4.]

(Variables of the program 4) =

p: array {1 .. m) of integer; {the first m prime numbers, in increasing order)
See also sections 7,12, 15, 17, 23, and 24.

This code is used in section 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

182

§5 PRIMES THE OUTPUT PHASE 3

5. The output phase. Let's work on the second part of the program first. It’s not as interesting
28 the problem of computing prime numbers; but the job of printing must be done sooner or later,
and we might as well do it sooner, since it will be good to have it done. [And it is easier to learn
WEB when reading a program that has comparatively few distracting complications.}

Since p is simply an array of integers, there is little difficulty in printing the output, except that
we need to decide upon a suitable output format. Let us print the table on separate pages, with rr
rows and cc columns per page, where every column is ww character positions wide. In this case we
shall choose rr = 80, cc =4, and ww = 10, o that the first 1000 primes will appear on five pages.
The program will not assume that m is an exact multiple of rr - cc.

(Other constants of the program s) =

rr = 50; {this many rows will be on each page in the output }

cc =4; {this many columns will be on each page in the output }

ww =10; {thie many character positions will be used in each column }
See also section 19.
This code is used in section 2.

6. In order to keep this program reasonably free of notations that are uniquely PASCALesque,
[and in order to illustrate more of the facilities of VEB] a few macro definitions for low-level
output instructions are introduced here. All of the output-oriented commands in the remainder
of the program will be stated in terms of five simple primitives called print_string, print.integer,
print_eniry, new.line, and new_page.

[Sections of a WEB program are allowed to contain macro definitions between the opening comments
and the closing program text. The general format for each section is actually tripartite: commentary,
then definitions, then program. Any of the three parts may be absent; for example, the present
section contains no program text.)

[Simple macros simply substitute a bit of PASCAL code for an identifier. Parametric macros are
similar, but they also substitute an argument wherever ‘8’ occurs in the macro definition. The first
three macro definitions here are parametric; the other two are simple.]

define print_string(#) = write(#) {put e given string into the oufput file}

define print_integer(8) = write(# : 1) { pul a given integer into the output file, in decimal

notation, using only as many digit positions as necessary }

define print_entry(s) = write(# : ww)

{ like print_integer, but ww character positions are filled, inserting blanks at the left }
define new.line = write_In { advance to a new line in the output file }

define new.page = page {advance to a new page in the oulput file}

7. Several variables are needed to govern the output process. When we begin to print a new page,
the variable page_number will be the ordinal number of that page, and page_offset will be such that
plpage_offset] is the first prime to be printed. Similarly, plrow_offset] will be the first prime in a
given row.

[Notice the notation ‘+ =" below; this indicates that the present section has the same name as a
previous section, so the program text will be appended to some text that was previously specified.}
(Variables of the program ¢) +=
page_number: integer; {one more than the number of pages printed so far }
page_offset: integer; {index into p for the first entry on the current pege}
row.offset: integer; {index into p for the first entry in the current row }

c: 0..cc; {runs through the columns in a row}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

183

4 THE OUTPUT PHASE PRIMES §8

8. Now that appropriate auxiliary variables have been introduced, the process of outputting table p
almost writes itself.
(Print table p 8) =
begin page.number — 1; page.offset —1;
while page.offset < m do
begin {Output 8 page of answers 8);
page.number — page.number + 1; page_offset — page.offset + rr = cc;
end;
end
This code is used in section 3.

8. A simple heading is printed at the top of each page.

(Output a page of answers 8) =
begin print_string("The Firat,"); print-inieger(m);
print.string(° Prime Numbers ---,Page.’); prini.inieger(poge_number); new.line; new line,

{ there’s a blank line after the heading)

for row.offset — page.offset to page.offset + rr — 1 do (Output a line of answers 10);
new.page;
end

This code is used in section 8.

10. The first row will contain

pl1)p(1+ r7), pll + 20 7r), .. ;

a similar pattern holds for each value of the row_offset.

{Output a line of answers 10) =
begin for ¢ — 0to cc - 1 do
if row.offset + c+ rr < m then print_eniry(p[row.offset + ¢ » rr});
new_line;
end
This code is used in section 8.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

184

§11 PRINES GENERATING THE PRIMES §

11. Generating the primes. The remaining task is to fill table p with the correct numbers.
Let us do this by generating its entries one at a time: Assuming that we have computed all primes
that are j or less, we will advance j to the next suitable value, and continue doing this until the
table is completely full.

The program includes a provision to initialize the variables in certain data structures that will be
introduced later.

(Fill table p with the first m prime numbers 11) =
(Initialize the data structures 16);
while k <m do
begin (Increase § until it is the next prime number 14);
kEek+1; plk) —j;
end
This code is used in section 3.

12. We need to declare the two variables j and k that were just introduced.
(Variables of the program 4¢) +=

j: integer; {all primes < 5 are in table p)

k: 0..m; {this many primes are in table p)

13. So far we haven't needed to confront the issue of what a prime number is. But everything else
bas been taken care of, 80 we must delve into a bit of number theory now.

By definition, a number is called prime if it is an integer greater than 1 that is not evenly divisible
by any emaller prime number. Stating this another way, the integer j > 1 is not prime if and only
if there exists a prime number p, < j such that j is a multiple of p,.

Therefore the section of the program that is called ‘(Increase j until it is the next prime number)’
could be coded very simply: ‘repeat j — j+ 1; (Give to j_prime the meaning: j is a prime
number }; until j.prime’. And to compute the boolean value j_prime, the following would suffice:
‘j-prime — true; for n — 1 to k do (If p[n] divides j, set j.prime «— false)'.

14. However, it is possible to obtain a much more efficient algorithm by using more facts of
number theory. In the first place, we can speed things up a bit by recognizing that p; = 2 and that
all subsequent primes are odd; therefore we can let j run through odd values only. Our program
now takes the following form:
(Increase j until it is the next prime number 14} =

repeat j — j +2; (Update variables that depend on j 20);

{Give to j.prime the meaning: j is a prime number 22);

until j.prime

This code is used in section 11.

15. The repeat loop in the previous section introduces a boolean variable j.prime, so that it will
not be necessary to resort to a goto statement. (We are following Dijkstra,? not Knuth.3)

(Variables of the program 4) +=
j-prime: boolean; {is j a prime number?}

16. In order to make the odd-even trick work, we must of course initialize the variables j, &, and
p[1] as follows.
(Initialize the data structures 16) =
i—1 ke1; pl1}—2;
See also section 18.
This code is used in section 11.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

185

6 GENERATING THE PRIMES PRINES §17

17. Now we can apply more number theory in order to obtain further economies. If j is not prime,
its smallest prime factor p, will be /7 or less. Thus if we know a number ord such that

plord]’ > j,

and if j is odd, we need only test for divisors in the set {p[2), ..., p{ord ~1]}. This is much faster than
testing divisibility by {p[2],...,p[k]}, since ord tends to be much smaller than k. (Indeed, when k
is large, the celebrated “prime number theorem” implies that the value of ord will be approximately
2\/k/Ink.)

Let us therefore introduce ord into the data structure. A moment’s thought makes it clear that
ord changes in a simple way when j increases, and that another variable square facilitates the
updating process.

(Variables of the program 4) 4=
ord: 2..ord_maz; {the smallest index > 2 such that p?; > j}
square: infeger; {sguare =p?,})

18. (Initialize the data structures 16) +=
ord — 2; square «— 9,

18. The value of ord will never get larger than a certain value ord.-maz, which must be chosen
sufficiently large. It turns out that ord never exceeds 30 when m = 1000.

{ Other constants of the program 5) +=
ord.maz = 30; {p2 4 m,. Must exceed pp }

20. When j has been increased by 2, we must increase ord by unity when j = p2,,, i.e., when
J = square.
(Update variables that depend on j 20) =
if j = square then
begin ord «— ord +1; (Update variables that depend on ord 21);
end
This code is used in section 14.

21. At this point in the program, ord has just been increased by unity, and we want to set
square := p?,,. A surprisingly sublle point arises here: How do we know that p,r4 has slready
been computed, i.e., that ond < k? If there were a gap in the sequence of prime numbers, such
that py4y > p} for some k, then this part of the program would refer to the yet-uncomputed value
plk + 1] unless some special test were made.

Fortunately, there are no such gaps. But no simple proof of this fact is known. For example,
Euclid’s famous demonstration that there are infinitely many prime numbers is strong enough to
prove only that py4y <= py...pe + 1. Advanced books on number theory come to our rescue by
showing that much more is true; for example, “Bertrand’s postulate” states that py4; < 2pi for
all k.

(Update variables that depend on ord 21) =

sguare « plord)» plord); { at this point ord < k)
See also section 25. '
This code is used in section 20.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

186

§22 PRIMES THE INNER LOOP 7

22. The inner loop. Our remaining task is to determine whether or not a given integer j is
prime. The general outline of this part of the program is quite simple, using the value of ord as
described above.
(Give to j.prime the meaning: j is a prime number 22) =
n— 2; jprime ~ true;
while (n < ord) A jprime do
begin (I p[n] is & factor of j, set j_prime — false 26);
ne—n+l;
end
This code is used in section 14.

23. (Variables of the program 4) +=
n: 2..ord.maz; {runsfrom 2 to ord when testing divisibility }

24. Let’s suppose that division is very slow or nonexistent on our machine. We want to detect
nonprime odd numbers, which are odd muitiples of the set of primes {pz, ..., pore)-

Since ord.maz issmall, it is reasonable to maintain an auxiliary table of the smallest odd multiples
that baven't already been used to show that some j is nonprime. In other words, our goal is Lo
“knock out” all of the odd multiples of each p, in the set {ps,...,pora}, and one way to do this is
to introduce an auxiliary table that serves as a control structure for a set of knock-out procedures
that are being simulated in parallel. (The so-called “sieve of Eratosthenes” generates primes by a
similar method, but it knocks out the multiples of each prime serially.)

The auxiliary table suggested by these considerations is a mult array that satisfies the following
invariant condition: For 2 < n < ord, muli[n] is an odd multiple of p, such that mult[n} < j + 2p,.
(Variables of the program 4) 4=
mult: array [2.. ord_maz] of integer; {runs through multiples of primes}

25. When ord has been increased, we need to initialize a new element of the mult array. At this
point j = plord — 1%, eo there is no need for an elaborate computation.

(Update veriables that depend on ord 21) +=
mult[ord — 1] — j;

26. The remaining task is straightforward, given the data structures already prepared. Let us
recapitulate the cutrent situation: The goal is to test whether or not j is divisible by p,,, without
actually performing a division. We know that j is odd, and that mult[n] is an odd multiple of p,
such that mult[n] < j +2p,. If mult[n] < j, we can increase mult[n] by 2p, and the same conditions
will hold. On the other hand if mult[n] > j, the conditions imply that j is divisible by p, if and
only if j = mull[n]}.
(1f p[n) is & factor of j, eet j.prime — false 26) =

while mult[n] < j do mult[n] — mult[n] + p[n] + p[n);

if mult[n] = j then jprime « false
This code is used in section 22.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

187

8 INDEX PRINES §27

27. Index. Every identifier used in this program is shown here together with a list of the section
numbers whete that identifier appears. The section number is underlined if the identifier was defined
in that section. However, one-letter identifiers are indexed only at their point of definition, since
such identifiers tend to appear almost everywhere. [An index like this is prepared automatically by
the WEB software, and it is appended to the final section of the program. However, underlining of
section numbers is not automatic; the user is supposed to mark identifiers at their point of definition
in the VEB source file.}

This index also refers to some of the places where key elements of the program are treated. For
example, the entries for ‘Output format’ and ‘Page headings’ indicate where details of the output
format are discussed. Several other topics that appear in the documentation (e.g., ‘Bertrand’s
postulate’) have also been indexed. [Special instructions within a WEB source file can be used to
insert essentially anything into the index.}

Bertrand, Joseph, postulate: 21.
boolean: 16.

¢ 1

ec: 3,7, 8,10

Dijkstra, Edsger: 1, 15.
Eratosthenes, sieve of: 24.
false: 13, 26.

integer: 4,17, 12, 17, 24.
J 12

J-prime: 13, 14, 15, 22, 26.
k]2

Knuth, Donald E.; 15.

m 2

mull: 24, 25, 26.

n. 23.

new.line: 6, 9, 10.
new.page: @, 9.

ord: 17, 18,19, 20, 21, 22, 23, 24, 25.
ord.maz: 17, 19, 23, 24.
output: 2, 6.

output format: 5, 9.

P 4

page: 6.

page headings: 9.
page_number: 7, 8, 9.
page_offset: 7, 8, 8.

prime number, definition of: 13.
print_entry: 6, 10.
print_inieger: G, 9.
prini_primes: 2.
prini_siring: 6, 9.

row offset: 7, 8, 10.

rr: 5, 8, 9, 10.

square: 117, 18, 20, 21.
true: 4, 13, 22

WEB: 1.

write: 6.

writedn: 6.

ww: J, 6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

188

§27 PRIMES NAMES OF THE SECTIONS §

(Fill table p with the first m prime numbers 11) Used in section 3.

(Give to j_prime the meaning: j is a prime number 22) Used in section 14.
(1f p[n] is & factor of j, set j.prime «— falsc 26) Used in section 22.
(Increase j until it is the next prime number 14) Used in section 11.
(Initialize the data structures 16,18) Used in section 11.

(Other constants of the program 5, 19) Used in section 2.

(Output a line of answers 10) Used in section 8.

(Output a page of answers 8) Used in section 8.

{Print table p 8) Used in section 3.

(Print the first m prime numbers 3) Used in section 2.

{ Program to print the first thousand prime numbers 2) Used in section 1.
(Update variables that depend on j 20) Used in section 14.

(Update variables that depend on ord 21,28} Used in section 20.

(Variables of the program 4,7,12,15,17,23,24) Used in section 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

OVERALL COURSE STATISTICS

This appendix contains the actual numbers for the distribution tables which were

presented in the text.

APPENDIX B

189

Table 25 is a summary of the student classification distribution for the CS/1 course for

the subject and comparison classes.

Table 25. Student Distribution by Classification (Actual)

Semester | Ul | U2 | U3 | U4 | Total
Fall90-H[28 6 | 1 | 1 36
Fal92-H|[29| 7 | 6 | C 42
Fall93-H| 26 [11| 0 | 1 38

Table 26 is a summary of the student major distribution for the CS/1 course for the

subject and comparison classes.

Table 26. Student Distribution by Major (Actual)

Semester | CPSC/CSEN { Other | Total
Fall 90-H 20 16 36
Fall 92-H 25 17 42
Fall 93-H 29 9 38

Table 27 is a summary of the overall grade distribution for the CS/1 course for the

subject and comparison classes.

Table 28 is a summary of the computer science major grade distribution for the CS/1

course for the subject and comparison classes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

190

Table 27. Overall Grade Distribution (Actual)

Semester | A | B [C | D | F | Other | Total
Fall90-H | 7 (17512 |3 2 36
Fall92-H | 20] 8 | 8|1 |2 3 42
Fall93-H} 9 (15|82 3 1 38

Table 28. Grade Distribution for CPSC/CSEN Majors (Actual)

Semester | A | B [C | D | F | Other | Total
Fall90-H | 4 |11]2 12 0 20
Fall92-H |12 4 | 511 |2 1 25
Fal93-H | 8 (9 |7(2]2 1 29

Table 29 is 2 summary of the non-computer science major grade distribution for the

CS/1 course for the subject and comparison classes.

Table 29. Grade Distribution for Other Majors (Actual)

Semester | A[B |C | D | F | Other | Total
Fall90-H| 3|6 {3}1}1 2 16
Fall92-.H | 8|4 (|3{01{0 2 17
Fall93-H| 1|6 |1}0|1 0 9

Table 30 is a summary of the overall grade distribution for the subsequent CS/2 course
for those students in the subject and comparison classes.
Table 31 is a summary of the overall grade distribution for the Data Structures course

for these students in the subject and comparison classes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 30. Overall CS/2 Grade Distribution (Actual)

Semester [A | B | C | D | F | Other | Total
Fall90-H (17| 7 (11010 0 25
Fall92-H [19(5 (2|00 1 27
Fall93-H [1310|101 0 25

Table 31. Overall Data Structures Grade Distribution (Actual)

Semester | A | B |C{D | F | Total
Fall90-H | 4 |12|3 (0|0} 19
Fall92-H {11 (3 |52 |1 22
Fall93-H | 9 | 6 [2 |0} 0| 17

191

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

192

APPENDIX C

INDIVIDUAL COURSE STATISTICS

This appendix consists of the individual statistics for the CS/1 classes upon which
much of the validation is based.

The ﬁrst. 14 pages are the information for the students enrolled in the comparison
classes. The first set of statistics (8 pages) is for the Fall 1990 honors class. This is
followed by the information for the students enrolled in the Fall 1992 honors class (6
pages).

The remaining 8 pages are the information for the subject class which is made up of

those students enrolled in the Fall 1993 honors class.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

193

y9e°LS 6E'PL 85°0L 89LL 90¢8 :abeieny |jeenQ
85 z8 G8 9. S6 €68 0'9sZ 1sdo N 9€-H06€E
514 L 6. 18 16 'S8 0252 1380 N SE-HO6E
1S €8 S8 96 88 468 069¢ ASdO In vE-HO6E
SS c8 19 Sl 64 LeL oiee 1SdO n €e-HOo6E
by S9 69 6L 98 08L 0vEZ SWdV €N ¢e-Ho6E
1 44 €9 6S 8S 99 019 0'e8t 13so n LE-HO6E
114 0s 22¢ 086 18dd IN 0€e-Ho6e

85 €8 W S8 3:] 06L 0L¢2 T3d n 62-H06E
14 99 €S €L 8 00L oO0LZ 1sdo in 82-H06¢E
114 $9 09 9 8 €69 0802 1S40 in 12-Ho6E
144 s9 272 8. 64 €8L 0'see HIVN N 92-Ho6E
r4Y L 59 I8 06 8L 0'9€2 1S40 N G¢-H06€
SS i8 (73 I8 16 o8 0'cEye N3ISO n v2-Ho6E
00 00 1839 1IN €2-H06€

134 LS L9 L9 62 oL 0F€le SWdY IN ¢C-Ho6¢E
€S 8L 92 8 86 08 0192 9380 2N 12-HO6€E
514 S 1] 68 18 €06 022 U3d N 0Z-H06E
|14 6S bS (43 es 249 0S8l 8d0 In 64-HO6E
SS S8 Z8 68 68 498 0092 138O in 81-HO6E
es 6L €L 88 €6 Lv8 O'vSe I8d0 In LI-Ho6E
41 144 123 it 65 eer 00t HIVN N 91-Ho6€
65 8 18 86 €6 L%6 08le 1839 In Si-HO6€E
€S I8 L 64 i8 08 o€re HOlIg n vi-HO6E
LS 8 08 L €6 €€8 00SC SWdY 2N £1-Ho6¢E
214 99 19 69 9L 0L Q0cke N3aHO 2N Zi-HO6E
29 68 06 98 18 28 0€9Z 313d 2Zn +i-HO6E
[AY] 08 29 :72 26 06L 04L¢C 9380 2N OL-Ho6€E
1S 3] 29 S8 8L 0SL 0szz ISd0 N 6-HO6E
15 €8 29 88 €8 LiL 0eee 1839 2n 8-HO6E
09 68 12 18 6 098 0862 184D LN 2-Ho6e
95 :72 |23 3] €8 £6L 0'8€C 1839 In 9-HO6€E
€5 64 69 73 |8 LeL o'tee 380 N S-Ho6e
0S L el 08 3] LiL 0eee 1Sdd N -Ho6E
00 00 TON3 141l €-HO6E

[44 4] 09 9L 19 L9 0e0 OASd n 2-Ho6E
214 €L GL 1272 88 L'6L 0'6EZ 1380 N L-HO6E

) ()] (0) (0) (0) (69) wexgy € z b aBeieay swexgy lofey ssen
weiboid epow s Buissegd wejqaid edl0Yyn feulq wex3y wexy wexgy wex3 [ej0]
g3M qem pexurl ‘uued ubiseq aidmny | Okl 0Lk Okb O 0Lk K

0661 [e4 - HO} | @ouBIdg Jeyndwon

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘uolssiwiad noyum paugiyosd uononpoidal Jayun 1aumo ybuAdoo ayj Jo uoissiwiad yum paonpoiday

Computer Science 110H - Fall 1990

Overall Standard Deviation:
Comp.Sci. Average:

Comp.Sci. Standard Deviation:
Non-Major Average:
Non-Major Standard Deviation:

Class Major

110 110
Total Exam
Exams Average

110

110

110

Exam Exam Exam

1

11.06

83.7
11.82
82.14
9.797

2

12.26

776
11.13
771.79
13.74

3

11.53
69.89
9.673

7.5
13.61

110
Final
Exam

10.81
76.32
7.901
71.79
13.37

Multiple Design
Choice Problem Passing Lists

(69)

6.2852
52.211
4.4789
50.214
7.9748

(W]

Pam. Linked

©

0

web
mode
)

WEB
Program
(0)

P61

195

1686

€506 668 €16 16'L€ SiL'v6 12'66 :ebesery |le10A0
26 L6 86 66 L6 00} 00} 9'L6 0'¢89 9¢-HO6¢E
86 S6 6 S6 G6 001 00} }'26 0089 SE-HO6E
41117 16 86 16 00l 001 00l 686 0269 ve-HO6E
86 16 16 00l 00l [+]1]8 00} 686 0269 €e-Ho6E
86 95 66 6 G6 001 00t v'i6 07289 ZE-Ho6¢E
96 %3¢ 96 26 €6 00t 00t 006 009 LE€-HO6E
88 09 00} 00} L'6% 0'gve 0€-HO6¢E

16 26 S6 86 S6 0oL S6 096 0'Z49 62-H06¢E
88 96 g6 €6 88 a0l 56 L'€6 0'959 8¢-HO6€E
96 6 ¥6 06 G6 S6 00t v'96 0199 22-H06E
18 88 5 18 06 004 00} £T6 0'9y9 9¢-HO6E
S6 16 16 S6 S6 00} 00} 016 06,9 SZ-HO6E
68 S6 €8 86 86 96 004 1 v6 0'6S9 ve-Ho6e
00 00 €2-H06€E

S6 88 $6 26 €6 (41019 ool 9'v6 0299 ¢Z-HO6E
£6 6 16 (4] 06 00} 00} }'S6 0'999 V2-HO06¢
16 06 16 96 00} 004 00} V46 0089 0Z2-H06€
SS 06 86 00} o6y o'cve B8}-HO6€

66 96 96 96 S6 00t 21113 v'i6 0789 81-HO6E
68 96 96 00} 00} 00} 00} €16 0’189 LI-HO6E
oL €L 16 €6 S6 86 00} 9'88 0029 91-HO6E
16 06 16 86 S6 00} 00l 196 0429 Sl-Ho6E
66 26 G6 G6 G6 00} 00l 996 0929 vi-HO6E
96 8. g6 88 S6 00} 00} }'€6 0289 €i-H06E
26 S6 16 86 86 004 00t 1’26 0089 Zi-Ho6E
16 1] 86 16 86 00} 00} L'l6 0'v89 ti-HO6E
16 96 ¥6 S6 S6 0o} 00l 1'96 0449 0L-HO6E
46 08 €6 €6 86 004 S8 ¥'i6 009 6-H06¢
s9 26 08 06 S6 96 06 928 0€cL9 8-Hos¢e
ool $6 86 16 g6 (¢]1]% 00!} L'l6 089 2-H06E
08 99 6 ;72 06 0ol [1]¢] 698 0'809 9-HO6€
26 6 26 S6 S6 00} 0ol 0'S6 0'699 G-HO6E
S6 €6 06 88 S6 (1]1]% 00} y'v6 0199 y-HO6E
00 00 €-H06€E

(74 08 SL S6 00} 00l V49 00L¥ 2-H06¢E
66 06 6 06 86 06 00} ¥'v6 0199 I-HO6E

YA 9 S S 14 4 e € FA Z 3 oBeioay sweiBoig
qe1 qe1 qe] ubiseg qel ubjseg qel ubiseq qel ubiseg qel weiboid (€101
(V133 1132 (1133 (1% (V133 /]33 Ot (1132 Ok (1134 11192 (132 (1133

066} 1184 - HOL } @duBIoS JeIndwo)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘uoissiwiad noypm pauqiyosd uononpoidal Jaypng “Joumo JybuAdoo ay) jo uoissiwiad yum paonpoiday

Computer Science 110H - Fall 1990

Overall Standard Deviation:
Comp.Sci. Average:
Comp.Sci. Standard Deviation:
Non-Major Average:
Non-Major Standard Deviation:

110 110
Total Program
Programs Average

110 110
Lab Design
1 2

3.157

99
3.391
98.93
2789

110 110
Lab Design
2 3

2.055
98.95
2479
99.57
1.116

110 110
Lab Design
3 4

6.656

93.6
8.351
94.93
2,631

110 110
Lab Design
4 5

8.435

924
9.281
91.36
7.006

110
Lab

4.722
94.78
3.583
93.29
5.762

110
Lab

9.923
91.56
10.16
81.36
24.21

110
Lab

14.91
94.83
3.833

85
20.86

961

197

90 82.000 Z6ELO'0 2e¥Z0°0 v9'e 9292 :ebeieAy ||BI8A0
0000 Zizo zZizo 1810 10Z-VI6 Q0P v oot v 9€-HO6E
000't rAYA [ATAL 1940 102-Vi6 00'% v 00’ 8 SE-HO6E
0000 Zizo FAYA] 192°0 202-Vi6 00V v 00'v v $E-HOBE
0000 882°0- 88.L°0- £€8°0- 102-Vi6 00C] 00'¢ a €€-H06E
00'€ a Ze-Hosee

0002 1200 41200 ¥S51°0 015-vZ6 00°E <] oi6v 00'b a LE-HO6€
000 4 0€-Ho6¢

000} [AZAY FAYA\ 2940 L0Z2-ViI6 00V A 00°¢ g 62-H06€E
0002 ZIzo rAYA] 1920 20Z-Vi6 00'% v 00¢ o) 8Z-HO6E
0002 zizo rA%A] 2910 102-VI6 00F v 002 0 LZ-Ho6E
002 e} 9Z-HOBE

000’4 zizo rAYA] 2920 20ZVi6 00'% v 00€ a8 SZ-HO6€E
000}~ €104~ €60 W60 S0SVI6 00T o) 00'€ 3] y2-Ho6E
o €2-HO6€

000’4 €10°0- 100 Liv0 L0SVi6 00C a 60T 0 ¢e-Hoee
0004 zizo FA%A] 2920 20Z-VI6 00'% v 00'€ a 12-HO6E
0000 9zi'L 9z 1250 SLS-VES 00V v 00’y v 0Z-HO6E
000 d 61-HO6€E

0000 zZizo FAYA] 2920 Z0z-vi6 00V v 00'¥ v 81-Ho6E
000t [AY A 2120 2910 102-Vi6 00'% v 00'€ a L1-Ho6E
000 E 91-Ho6E

00y v GI-HO06€E

000} zizo rAY A 492°0 20Z-Vi6 00'Y v 00'€ 8 ¥1-HO6E
00 a €1-HO6E

002 0 ZH-Hoee

0000 rAYA] rATA] 291°0 102-Vi6 00 \4 (118 4 v L-HO6E
0000 88L°0- 882°0- €640 Z0Z-Vi6 00°€ g 00'€ 2| 0L-HO6€
000} [AYA] rATA 1] 4920 20g-vi6 00 v 00'€] 6-HO6E
000'0 882°0- 8820 £€8°0- 10Z-VI6 00°€ 8 00'€ g 8-HO6E
0000 [A24] cico 1920 20Z-vi6 00V A\ 00y v 4-H06E
0000 6220 620 4900 205016 00t g 00¢ 8 9-HO6E
0004 IAYA)] zZizo 2910 10Z-VI6 00V v 00'¢ a S-HO6€
0000 88L°0- 882°0- €640~ 20Z-vi6 00t 2] 00e 8 t-Hoe6¢e
0 €-H06E

o't a 2-Ho6€

000°¢ [ATA] [ATA 291°0 L0Z-vi6 00V \4 00t a L-Ho6E

epaio Jejseweg JOPNASU] UORoeS quiod epaid (s)epio sjuiod eprio (s)apri
uj u) uj u| sugjssuwieg Jejssulag esinod exunod (1] %} esIN0Y esinod [1] %A
eseaJou) ecualeyiq eouaseliq eouaieylg feuogippy 024 oz oz juenbesqng 044 Q) snomaid

0661 1led - HOL L 82uslag Jaindwod

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘uoissiwiad noyum paugiyold uononpoidal Jayung “Jaumo WbLAdoo sy} Jo uolssiuad yum peonpoiday

Computer Science 110H - Fall 1990

Previous 110 110 Subsequent 120 120 120 Additional

| | | Difference Difference Difference | Increase

| 110 Course Course 110 | Course Course Semester Semesters | In In In | In

| Grade(s) Grade Points Grade(s) | Grade Points | Section Instructor Semester | Grade

| ! | |
Overall Standard Deviation: 1.13 0.557 0431491 0.464465 0471307 0.748331
Comp.Sci. Average: 27 3.667 -0.01184 -0.02594 -0.03056 0.666687
Comp.Sci. Standard Deviation: 1.145 0577 0.430855 0.428494 0.438527 0.816497
Non-Major Average: 2643 25 0.0823 0.0815 0.0732 03
Non-Major Standard Deviation: 1.109 1.688 0.354632 0.44884 0.449742 0.458258

861

199

660'C 0 2e9eso’e :ebeiony jjeieng

008'€ 000°}- 00'e g 9e-HO6€

SE-HO6E

00S'e 0000 00’y v vE-HO6E

1902 0000 ooe : | €E-HO6E

ce-Ho6¢E

6€9C 000t 00e 0 te-Ho6E

0€-HO6€

96G5°€ 0000 o0't 2] 62-HO6€E

+¥60°€ 000} c0'e a 8¢-HO6€

506'¢ 000'}4 00] 42-HO6E

92-H06¢

SPS'E 0000 00'e] G2-HO6€E

yZ-Ho6E

£2-H06¢E

Ze-Ho6E

620 0000 00e g " b2-Ho6E

0Z-HO06E

61-HO6E

€9t'e 0002 00¢ o] 81-H06¢E

2ive 0000 00¢ a 21-HO6€

91-H06¢E

Si-HO6€E

¥1-HO6E

e-HO6E

Zi-Hoee

bL9€ 000'4- aoe g ti-Ho6e

8ev'e 000°¢ 0oy v 0-HO6E

czZl'e 000°} ooy v 6-Ho6Ee

9.9¢ 0000 00€ g 8-HO6E

yov'e 0000 00y v 2-HO6¢E

9-HO6¢

134°X4 0000 00'e 2] S-HO6E

viee 000°}- 00C o) -HOo6E

€-HO6¢E

2-Hoe6¢e

000°€ 0000 0oe 8 I-HO6E
ole epe1o sjulod epaly
Jeyyy uj esinoy asinon

vdo aseasou| oLe oie

0661 lied - HOL | 8duelRs Jeindwo)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘uoissiwiad noyum pauqiyosd uononpoidal Jaypnd “Joumo JybuAdoo ayy Jo uoissiwiad yum peonpoldey

Computer Science 110H - Fall 1990

Overall Standard Deviation:
Comp.Sci. Average:
Comp.Sci. Standard Deviation:
Non-Major Average:
Non-Major Standard Daviation:

210
Course
Points

0.604691
3.0625
0.658478
1
1.414214

Increase
In
Grade

0.794719
0.0625
0.826797
-0.11111
0.31427

GPA
After
210

0478
3.058
0.474
1.105
1.585

002

201

()] ()]
weuboaug epow
g3m qem

St
6
€l
€t
9l
42
9
S
L
33
ot
0
4
144

€}
9
L

S
9l
Ll
el

6

el
4
6
143
0t
i
9
0
6

133

pajun

9l
9
9l
9
9l
9
9
9
9

43
9
44

9
9

e
9t
9
9
c

ch

9t
9l
9l
9l
9l
=14
91
9t
9l

9!

14
144
ve
[43
[44
[47
[44
e
(44
yXA
ve
174
9c
[44
44
(4
8c
0z
ce
oe
144
oe

254

Y4
8z
i
4
82
8¢
0e
9
e

[44

(ze)
sisn Bujssed wejqaid eotoyD
‘uued uBiseg eidainp

L
92
z8t
591
18}
8bl
1414
0Si
Sct
ach
€6

19

€2t
r4 43
L0}
L
8
L
184
6L}
oyl
€8t

SSH

v
694
1414
zsi
19
€0}
91

1444
221

wex3y
[euly

(1122

aBesory swexg
wex3y wexg wexgy

HLIVA
1839
asdo
HiVA
133N
1SdO
1SdO
1839
1SdO
I8dD
1Sd0
1340
18d0
13d0
18dO
LSNI
18dO
1839
13dD
1SdO
I8dO
SAHd
SWdV
7340
1839
1340
N3AD
W3HO
1340
T110d
18d0
13dO
1373
1SdO
13d0
13d0
13d0
OAsSd

Jofeyy sse|n

8E-HZ6E
LE-HZ6E
9e-HeZee
Se-HZ6E
pe-HzZee
£E-HZ6E
ce-He6E
LE-HZ6E
0€-HZ6E
62-HZ6E
82-HZ6E
42-HZee
9Z-HZ6E
SZ-HZee
ve-HZee
€2-Hzee
¢e-HT6e
}2-HZ6E
02-HZee
6l-He6e
81-HZ6E
Li-HZee
9}-Heee
Si-HZ6e
vi-HZ6E
€-HZ6E
ci-Heee
Li-HZee
01-Hcee

6-HZ6E

8-HZ6¢E

4-Heee

g-Hzee

S-Heee

t-Hzee

€-HZ6e

¢-Heee

I-HeZee

266} lied - HOt | @ousidg seinduiod

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘uoissiwuad Inoyum panqiyosd uononpoidal Jayung 1aumo JybuAdod sy Jo uoissiuisd ypm paonpoiday

Computer Science 110H - Fall 1992

| | %10 1410 | 110 110 110 | 110 | Multiple Design Pam. Linked web WEB |
| | Total Exam | Exam Exam Exam | Final | Choice Problem Passing Lists mode Program |
{ Class Major { Exams Average | 1 2 3 | Exam | (0 32 (18) (16)) © |
392H-39 | V1 GEST | % = 150 % 28 16 8 =
392H-40 | Ut CPSL | [| 176 | 29 16 14 i
392H-41 | U2 MEEL | { | 193 | 32 16 15 i
392H-42 | U1 CPSL | | | 152 | 27 16 15 i
Overall Average: 147 26,703 15459 10972
Overall Standard Deviation: 31.14 42609 1.3675 4.3172
Comp.Sci. Average: 138.9 25636 15636 10.333
Comp.Sci. Standard Deviation: 34.14 41181 1.1499 48041
Non-Major Average: 159 28.267 152 11.867
Non-Major Standard Deviation: 21 39744 16 3324

A\

203

0000

0000
0000
0000
0002

000°L-
000z

000’4
0000
000'}

0000
0000
0000
0000
000t
0000

000°)-

0000

0000
00072

000’}
0000

0000
epeiD

Y]
aseaou)

S0Z'0

S0Z'0
S020
S0C0
sS0Z'0

620"
6.8'0

S0Z'0
S020
S8L°0-

S02°0
b.8°0-
s0Z'0
S02°0
S02°0
S0Z'0

S6L°0~

6180

§64°0-
Ay

114 0
S0Z°0

9zi'o

Injseweg
uj
eoualeyiq eoualeylq edsusueyiq

S0Z'0

S0Z'0
S0Z°0
A
sS0Z'0

S6L°0-
6.80

5020
$0Z°0
S64°0-
soz'o
vi8°0-
S0Z'0
S0T0
S02°0
S0Z'0

S6L°0~

6180

§62°0-
S0T0

T4
S02°0

9zL'0

Jojongsu}
uj

z8L’o

280
1AL

4:1 1)
4810

SL°0-
62¢'0

1810
281’0
8180
G20
910
481°0
4840
2810
SZ'0

8180~

950'}

€18°0-
S2'0

vl
sZ'0

Z0

uonoes
yj

20Z-YE6

202-ve6
£0Z-VEL
¢0C-veEd
+02-VEG

£02-ved
216086

+0Z-VEB
¢0Z-ves
20Z-vee

€0Z-VE6
105S-vVES
102-VEE
102-VEB
20Z-veEd
€02-vee

20Z-vee
905-vES

805-0E6

102-vES
€02-VES

€05-0¢6
€02-VE6

S0S-VES

00’y

<

00'¢
00t
00'¢
00y

<L <L

00'e
0o’y

00'v
00’y
00'¢

00’y
0oz
00'%
0¥y
00'd
00y

0ot

0o <0< g «m

o'y
00t
111 4
0oc
0oy

0 <0 4o <

00'¢

sjuod epeId

SIojS8WWBS JB)SeWes 8sinoy esUnoy

leuopippy 024

(174 S 1148

00t
00'e
o't
00y
oo
00y
00C
00C
ooe
00’
1y 4
000
00'e
00t
oo0e
13 4
00y
002
00’
(11 4
00t
(113 4

00y
ooe

o'y
00y
00y
00t
00'e
[+]1 A
00z
VeV 00'F
00t
000
0o'e

(s)lepain sulod speig (sleper
[1]4 5 8sInod esunoy gL}
uenbesqng 01}

Cou<oovnnc<c<EncOcncCcOCCOCDLOCOVOCLI DL

04 snoneld

8€-HZ6E
LE-HZ6E
9e-HZ6e
Ge-HZ6E
be-HZ6E
€E-HZ6E
¢e-HZee
LE-HZ6E
0€-HZ6€
62-HZ6E
82-HZ6E
L2-HL6E
9zZ-HZ6E
SZ-HZ6E
¥Z-HI6E
€2-Hz6E
¢2-HZ6e
12-HZ6E
02-HZ6E
6}-HC6E
81-HZ6E
2}-HZ6E
91-HZ6E
Si-HZ6E
viI-HZ6E
€i-HZ6E
Cl-HZ6E
L-HZ6E
0l-HZee

6-HZ6€

8-HZ6¢E

4-Hzee

g-HZ6E

S"HZ6E

t-Heee

£-HZee

Z-HZ6E

+-HZ6E

Z661 led - o} L eousios endwo)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘uoissiwad Inoypm penaiyosd uononpoidal Jeypng Joumo yBuAdoo syl Jo uoissiwiad yim paonpoiday

Computer Science 110H - Fall 4992

Previous 110

110 Subsequent

120 120 120 Additional

(| | Difference Difference Difference | Increasa |

| 110 Course Course 110 | Course Course Semester Semesters | In In (] |)} |

| Grade(s) Grade Points Grade(s) | Grade Points | Section Instructor Semester } Grade I
392H-39 } B 3.00 } ’ | |
392H-40 | A 4.00] A 4.00 S3A-203 | 0.25 0.205 0.205 | 0.000 |
392H-41 | A 4.00 | A 4.00 93A-201 | 0.187 0.205 0.205 | 0.000 |
392H-42 | A 4.00 | A 4.00 93A-202 | 0.182 0.205 0.205 | 0.000 |
Overall Average: 3.103 3.654 0.032538 0.007385 0.007385 0.307692
Overall Standard Deviation: 1.128 0.617 0466156 0512433 0.512433 0.773067
Comp.Sci. Average: 3.045 35 0.039 0.0418 0.0418 0.45
Comp.Sci. Standard Daviation: 1.147 0.975 0.48599 0.509299 0.509299 0.804674
Non-Major Average: 3.333 2 0.080364 0.013727 0.013727 0
Non-Major Standard Deviation: 0.789 1.907 0.129005 0.297249 0.297249 0

y0¢

205

60p'c
Sict
269'1

215C
aee
asv'e
0092

80S€
000C
€26T
652'Z
yoEe

ocie

osL'e
We'e

682°C
000

SL€°}
§5¢€'C

e
oz

oyy
vdo

0000
0000
0000

000°2-
000°4-
000’}

000°2-

0000
000'2-
000°}-
0002-
000t

000°¢-

0000
0000

0000
000C

000'}
000}~

000+
epei9

uj
esealou)

00y
o'y
00¢

002
00’}
00’y
00z

(1104
000
00t
00
0oy

00’}

00’y
00y

00°e
00y
00Z
00°€
[s]08°4
suiod

esuno)
(1174

8€-HZ6E
LE-HZ6E
96-HZ6E
SE-HZ6E
ve-HZee
€E-He6E
ZEe-HZ6e
tE-HC6E
0e-HZ6€E
62-HZ6E
8¢-HzeE
L42-HZ6e
9Z-HZ6E
SZ-HZ6E
bZ-HZ6E
€2-HZ6E
(A A 1A 1
12-HZ6E
02-HZ6E
6i-HZ6E
81-HZ6E
L}-Hzee
91-HZ6E
Si-HZ6E
vi-HZ6E
€1-HZ6E
2i-HZ6e
Li-HZ6E
04-HZ6E

6-HZ6E

8-HZ6E

2-HZ6E

gHZ6e

S-HZ6E

y-HZ6E

£-HZ6E

Z-HZeée

L-HZ6E

<omug o QO o«

[a]

< 00 <o <€ <

epeld
asinon

oie

2661 iled - HO} 1 esuelog seindwo)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘uoissiwiad 1noyum pauqiyosd uononpoidal Jeypnd Jaumo JybuAdod ayp Jo uoissiwiad yum paonpoldey

Computer Science 110H - Fall 1992

| 210 210 Increase GPA

| Course Ccurse in After

| Grade Points Grade 210

|
392H-39 |
392H-40 |
392H-41 I A 4.00 0.000 3.652
392H-42 | A 4.00 0.000 3875
Overall Average: 2954545 -0.36364 2.863
Overall Standard Deviation: 1223901 1.226431 0.689
Comp.Sci. Average: 2736842 -0.15789 2475
Comp.Sci. Standard Deviation: 1.331485 1.088851 1.061
Non-Major Average: 1.333333 -0.22222 1.427
Non-Major Standard Deviation: 1.885618 0.628539 1.664

90¢

207

8

1]
6

4
6

et
(42
8

1]
[43
Zi
6

b
€t
8

1713
[4
1
‘i
43
143
(43
H
cl
42
6

]}
€l
14
€l

6

oL
€}
€}
el
€l
(112

TEETMTOD TOTCTOTTVNLTONNETTNNTTOOTTrr-OTOMNN

(s1) (s)
welbug spow

g3M qam

ONNSTO«-O ommo-—mg NTNVOOMONT~"NTOOTOONMTT

2

s8] Bujssed wejqold ealoyd
uBiseq erdginy

poxup]

YISO TOMTOTTTM T

e A 4 ad

%)

‘uued

O NNN
-

(=g ok~
-

-~ - -

QNS‘_}NNNQQNQNNU}

L
ch
6
43
0}

(21)

85
€L
€9
1S
SS
19
173
144
IS
(73
€9
1S
SL
29
09
€L
€S
SS
29
99
€L
L
69
SS
95
69
IS
9L
9
€9

62
95
29
59
69
eL
0s

(08)

1344
184
251
ol
StEl
vl
[4:13
(513
61
cLi
95t

[4:17
95t
v
4:13
8zl
343
st
€91
€8}
€8l
gt
ebl
£el
89}
act
881
91
14°13

0L

€l
6v}
291
(1743
333
vZi

wex3g
leuyy
Ok}

€ Zz b
wex3y wex3 wexg
(1194

oL

8s
v8
V8
4]
zs
171
€8
0L
6S
z8
€8
8
88
89
S9
S6
19
6.
8L
I8
€8
68
L
9L
¥8
€L
99
Sl
14:]
£8

£
4:]
€L
I8
[4:]
oL
0S

08
06
1]
173
88
8
oL
S
0L
92
6L
19
c6
c9
iL
6L
€9
88
06
6L
S8
S8
(4]
€8
S8
98
6L
61
8
16
09
Sy
68
26
S8
69
S8
89

(132

469 0602
£98 065C
068 0'SsZ
L'eL 0'lee
12372 oeez
008 o00ve
€8, 0see
02L 0912
£€¢9 04181
LeL oLee
€6L 08eZ
LeL 0o'lee
168 0692
00L 0gole
£€eL 0022
298 0092
09S 0891
€08 0ive
LS8 0482
108 0¢eve
€98 0'6SZ
'8 0¢€9e
€6L 09z¢
'8 0'9¢C
'8 oSy
09L 0'8¢¢
L9 0961
£€6. 08eC
gze o09ye
£e8 0082
g0Z 009
€6 0901
LLL oegee
VAN A
£e8 00se
€Ll o0cee
€28 0Live
€19 08l
sbassay swexy
wex3y [ejo)
ok (1133

AsSdO n
1Sd0 N
asdo in
1s39 INn
asdo N
sd0 in
HOIg 2N
avnga in
1839 an
1sdo N
HIYWN 2N
SGN3 N
asdo N
asdo 1IN
SWNI8 2N
Isd0 N
9S40 INn
1sd0 N
ASdO zn
98d0 2n
asd0 2Zn
1S40 N
1sdd N
1sd0 in
1sdo N
313 en
18dO n
9840 N
ASdO in
1Sd0 N
1sd0 2N
1340 N
ISdO cn
asd0 iIN
I8d0 2N
1839 N
sdo iINn
840 N
Joleyw sseln

8E-HEGE
LE-HE6E
9e-HE6E
GE-HEGE
vE-HEBE
€€-HEBE
c¢e-HE6E
Le-HE6E
0€-HEGE
62-HE6E
82-HE6E
L2-HEBE
9Z-HE6E
SZ-HE6E
ye-Heee
€C-HEGE
Ce-HeE6e
}e-HEBE
0Z-Heee
64-HE6E
8i-HEee
Li-Heee
gi-Heee
SI-HE6E
vi-HEGBE
£i-HE6E
ci-Heee
L-HEGE
0l-HEGE

6-HE6E

g-HE6E

L-HeEee

9-HEGE

S-HEGE

rHE6E

€-He6e

¢-Heee

I-HEBE

€661 ({23 - HOL | edusiog seindwo)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘uoissiwiad noyum payqiyosd uononpoidal Jayung “Jaumo WybuAdoo ay; Jo uoissiwiad ypm paonpoiday

Computer Science 110H - Fall 1993

| { 10 410 [110 110 410 | 110 | Multiple Design Pam. Linked web WEB |
| | Total Exam | Exam Exam Exam | Final | Choice Problem Passing Lists mode Program |
| Class Major | Exams Average | 1 2 3 | Exam | (80) (12) (4) 4) (5) (15)]
] | I | [|
Overall Average: 7858 7465 75.38 150 61811 9.1892 35946 1.9444 33243 1127
Overall Standard Deviation 10.23 1231 1335 24.42 98168 28649 1.0256 206131 14342 1.6216
Comp.Sci. Average: 79.97 7468 76.04 152 6225 9.1429 3.6429 21481 3.1429 11536
Comp.Sci. Standard Deviation: 1091 1331 14.78 2485 10.041 28374 0934 21723 15972 1.4996
Non-Major Average: 74.11 7456 73.33 144 60444 9.3333 34444 1.3333 38889 10.444
Non-Major Standard Deviation: 5.626 85 696 2197 89457 29439 1.2571 1.2472 0.3143 1.7069

80¢

209

L
Qe
okt

26
G6
S0k
S9

€6
oLt

08
SL
80}
<ol
£9
Si
SL
ot

S8
00l
0oL}
okt
+6
S8
$6
0L
S
ot
ot
s9

14
66
o
66
1134
S0k
174

9
qe
ohb

06 Ov 6L
09 6v 16
0k 0S5 16
88 6y €8
0L 6y 68
86 Sy 86
VA 4
0 Se
06 e 96
88 8y 96
500 Sy 66
9% 0S 86
6 St 65
N9 05 SS
0oL ey 86
se
9% SS
0 S¢ 96
oL 6y 66
0L 05 66
00t 05 86
6 8p
S8 e v
09 oF €6
98 Sp S8
0z Ss& Op
86 60 YOI
0 st Sb
oL v 08
S sy Si
S6 08 96
0 06 0L
26 WSS
€6 05 S8
86 9 86
o Oy SL
S S
qe1 ubseg q
oLk Ok O

(34
6y
6b
154
ot
144
34
oY
Sy
0s
414
6y
214
144
6y
1414
6€
Ly
0e
14
0S
514

124
144
144
r44
6%
6¢€
14
144
11
134
114
Sy
6%
0S
Sy

1144

06
06
€0}
09

(113
(1] 2
c6
0}
€8
1] 3
00}
SOk
09
€6
SOL
S6

18
86
SOL
Lok
€6
S6
06
S04
08
SOk
S6
09
08
S
06
S8
v6
S0k
SOt
18

0Lt

0z
143
oy
oy

iy
o
14

144
Sp
6y
8y
6¢
6¢
6
144
6¢€
34
214
514
144
se
SE
St
14
S€
4
144
14
St
S

oy
VA4
6v
0s
144
6¢

(1193

S6
88
56
S6

004
86
08
oy
S8
€6
6
86
€8
€6
86
06
88
09
86
86
ot
GE
88
88
86

16
S8
26
oy
0
86
00}
00}
004
56
86

(134

<14
A4
Sy
514
(A4
14
14
114
Sy
1]

14
14
14
oy
14
14
144
iy
124
St
514
14
Se
A4
(44
44
14
iy
Se
14
e
SE
i€
14
A4
0S
14
A4

ot}

06 '
00¢
S6
00}

66
06
68
¥6
S6
oot
00}
00k
ov
00k
S8
14
S6
SL
06
06
a0t
1))
S6
0L
SL
08
00}
00}
004
S8
0L
00}
00}
00}
0ot
004
00}

v v € € z z b
g1 uBseg qe7 uBiseg qel ubissq qen

(U4

p'e8
€48
£'86
6'€8
06
6'G6
G'l6
965
9'tE
o'v8
G'e6
9'66
6'86
voL
Se8
9'€6
0'0S
[XA]
S'69
g'l6
866
966
9'29
6’48
€'e8
698
[14
S004
€29
£'68
934
}'8¢€
806
€0
06
0’66
€86
gzL
ebeiony

weiBoug
oL

0'e89
0869
098
0419
0CL

0294
0082
oLLY
0692
0CL9
0'8bL
0'l6L
0164
0'€95
0099
0'6bL
0'00v
oLy
0'95S
0082
0861
0464
0'10S
0659
0999
0669
0Z.e
0'v08
0’86y
0289
0'see
0'50€
0921
0295
0'ees
0'26L
0'98.
0085

sweiboug
eoL
(1135

8e-HE6E
LE-HEGE
9¢-HE6E
Se-HEBE
PE-HEGE
€E-HE6E
Ze-HEee
1E-HEGE
0e-HE6E
6Z-Heo6e
8Z-HE6E
L2-Heee
92-HEee
SZ-HEGE
$2-HEGE
€2-Heee
Ze-Heee
IC-HE6E
02-HEeee
61-HEGE
81-HEGE
Li-Heee
9l-HE6Ee
St-HE6E
pi-HEGE
el-HEe6E
Zi-HEBE
LL-HEGE
0l-HE6E

6-HEGE

8-HEGE

L-HE6E

9-HEBE

G-HEGE

HE6e

£-HE6E

¢-HEee

I-HEBE

£664 I18d - HO} | eousiog seindwiod

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘uoissiuiad Inoyum pangiyosd uononpoidal Joyung “Joumo JybuAdoo sy} Jo uoissiwiad ypm paonposdeoy

Computer Science 110H - Fall 1993

| 110 110 | 110 110 110 110 110 110 110 110 110 110 110 |}
| Total Progam | Lab Design Lab Design Lab Design Lab Design tab Lab Lab |
| Programs Average | 1 2 2 3 3 4 4 5 5 6 7)
| ! |
Overall Average: 8081 4155 8583 4181 8781 4422 7788 4489 7655 75.T1
Overall Standard Deviation 14.75 8456 2229 8508 2299 5241 2367 5365 3245 34.71
Comp.Sci. Average: 88.54 4028 85.04 4093 8852 4375 78.76 44.15 7592 7542
Comp.Sci. Standard Deviation: 16.06 9.243 2351 9.269 20.12 5711 2379 5804 3248 3491
Non-Major Average: 93.78 4567 8822 4488 8567 4587 7544 4738 785 7663
Non-Major Standard Deviation: 8417 2108 1792 3586 20.87 2944 2317 2058 32.26 34.04

01¢

211

000'}
000°}-
0000
000'}

0000
0000

0000

0000
0000
000

000°t-
0000

000°4-
0000
0000
000’}
000}
0000

0000
0004
0000

000'¢-
000t
000°t
000't

epeip
u|
aseasou|

.01
4200
2201
04

S0
L0

S0

1200
L0k
L0

S0
Sh

S0
S0
S0
1200
S0
S0

S0
S0~
2200

S¢
S0
S0
S0

Jejsoweg
uj

9.60
v2Zo'0-
9160
9460

g0
9.6'0

S0

v20°0-
9.6'0
9160

g0
) o

S0
G0
S0
200~

S0

S0
S0
$20°0-

gt
S0
S0
g0

Jojongsu)
uj

SLe°)
G280
1990
6250

A
1190

SET0-

14
is€'L
1990

90-
889°}-

889°0-
zieo
0
0
cie0
S€C0-

o
9'0-
SLE'0

seee”
cie0
(434"
[A24Y

uogoes
ul

eoualeyig eoualeylq eoualelig

S0S-V¥6
S0S-VP6
905-Vv6
€05"vv6

20Z-VH6
105-Vb6

20Z-vv6

605-vy6
$05-vb6

90G-Vv6
L0Z-Vb6
€02-v¥6

€0Z2-V¥6
£0Z2-vv6
10Z-v¥6
605-vv6
£0Z-V¥6
c0z-vv6

L02-V¥6
+02-V¥6
S05-Vi6

20z-vv6
€02-Vy6
£0Z-VH6
€0T-vv6

00y
ooe
00t
00'¢

00'e
00'v

<m <<og

00e

00t
a0’y
00y

00c
00e

00'e
00y
ooy
o0'ec
00’y
00'e

oDCo<<CO O O <@ o

00y
00'c
00'e

mm<

000
00'¥
00t
oo'P

<< <L

sjulod eprID

siejseweg Jejsewaes eKNcY asnoD

feuonippy 021

1743 (744

uo'e
0oy
00y
00'e
000
00t
00’y
00cC
000
00t
00'e
00t
[olen4
002
00t
00y
VeV 00}
00C
00t
00’y
00y
00y
002
00'e
oo0e
00t
vee-d 00}
00y
00¢C
0o'e

000
00z
00z
00'e
00'e
00€
002

(s)epau suIog eprio (8)opErD
(1191 sinod esunod 0L
juenbesang 041

ODDOOLIVVOCOBDDNOLLLCNOOLCDOCONOLOCODULMLLD

04} snonaid

8€-HEBE
LE-HE6E
9€-HE6E
SE-HEGE
vE-HE6E
£€-HE6E
ZE-HEBE
LE-HEGE
0e-HE6e
62-HE6E
8Z-HEBE
LT-HE6E
9Z-HE6E
GZ-HEBE
ve-Heoe
€2-HE6E
ZZ-HE6E
+2-HEGE
0Z-HEo6E
61-HE6E
81-Hee6e
L1-HEee
9}-Heee
Si-HE6E
PI-HE6E
€I-HEGE
Zh-HEeE
I -HEBE
04-HE6E

6-HE6E

8-HE6E

1-HEeE

9-HEGE

G-Heee

y-HE6E

€-HEBE

Z-HE6E

L-HEGE

£661 lied - HOl | eouelog Jeindwod

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘uoissiwiad 1noyyum paugiyosd uononpoldal Jeyung “Joumo JybuAdoo ayj jo uoissiwiad yum paonpoiday

Computer Science 110H - Fall 1993

| Previous 110 110 Subsequent | 120 120 120 Additional | Difference Difference Difference | Increase

| 110 Course Course 110 | Course Course Semester Semestars | In In In | in

| Grade(s) Grade Points Grade(s) | Grade Points | Section Instructor Semester | Grade

I | I 1
Overall Average: 2676 3.36 0.064 0.0504 0.04908 0.2
Overall Standard Deviation 1.14 0.889 0922045 0.967559 0.990498 0.848528
Comp.Sci. Average: 2679 3.286 -0.012 -0.05562 -0.02195 0.142857
Comp.Sci. Standard Deviation: 1.167 0.933 0.98665 1.005865 1.026955 0.888322
Non-Major Average: 2667 25 0.308667 0.404667 0.455167 0.333333
Non-Msjor Standard Deviation: 1.054 1.803 0.237647 0.442191 0.471297 0.471405

¢1e

213

ONNMN
-

com
b

-~

- -

QN&!NNNQQNQNNQ

4
[43
6
Z}
ol

8}
14
[44
44
0z
oz

1]
0z
114
St
142
6

44
8
Sl
9
9l
144
|14
4]
9
ve
14
34
ve
St
14
6
14
i
(44
8l
9
113
L1
(24

S

143
8t
Si
Ll
61
9

8l [43
(174 T4
ct 8l
14 143
14 147
8l 142
112 9
9l 6

0z 6

9l 64
ol 1513
14 9
8 Sl
9 b
vi 9
9l 114
144 i
9} S
(114 (174
9 S}
14 34
143 (174
8} 0

8 el
($74 147
9 8
9l 6!
14 8l
8} L}
9l St
o €

9l 4

143 8l
8t 0z
143 0z
9l (43
143 9
142 4

(21) leuis (S2)e wex3 (5z)z wex3 (0z)1 wexzyozZhseL-aid

Bunjos
weiqasd

Bunjog Bunjos
wejqald

weqoid

Bunjog Bumnjog
welqaud weiqaid

804'E

1S6'C
000't

oove
e9°¢

vL6C

E6'E
bi5C

8e8'e

ong'e
sS08'c

29.°¢
SE6'T
18¢C

oov'e
€90t
609t

0ie
Jeauy
YdO

0000

0000
000'}

000°¢4-
0000

000}

0000
0004

000°}-

000°4-
0000

000°}-
000z
0004~

000°4
000°)
0000

epeio
u
asealou)

00t
o'y
00’y
00
ooy

ooy

00y

00e
oo'e

oo'e
ooy

00'e
o0’y
00z

00’y
00t
0o0'e

sjulod
asino)
oie

<0 <<€ @

<

o<

<m

o<

v
v
g

epau
8sIn0D

oLe

8E-HE6E
LE-HE6E
9E-HE6E
GE-HE6E
ve-HE6E
£E€-HE6E
CE-HEGE
+E-HEEE
0€-HEee
62-HEGE
82-HE6E
LZ-Heee
9Z-HEBE
SZ-HE6E
vZ-Heee
£2-HEBE
Ze-HE6E
12-HEGE
0Z-Heee
61-HE6E
8I-HE6E
Li-HeEee
9i-HE6e
Si-HEBE
bi-HE6E
€1-He6e
ZI-HE6E
H-HE6E
0i-Heee
6-HESE
8-HE6E
L-HE6E
9-HE6E
S-HE6E
-Heee
€-Heee
2-Heee
}-Heee

€66} I1ed - HO} | @dusiog Jeindwo)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

214

T6EV6'T 699297 LYO096Z 8886612 Z9VBLOE 665t 96868V'0 265656’ ‘uogeIe(pIepuB)s JofeN-uoN
SCEEEC'6 2999902 68888°LL 22ZZZ’Sh L9999°€) 666t ¥0 vz ‘ebeiany solepy-uoN
EPLE8'Z LBPEISE YZL96P 90LL8C Z6L06ES 9050 28526'0 $S8669°0 :uogeineq puepue)s ‘198'dwog
2S82b1'6 EPLL0'0Z 2S8ZV'9L E€OLEG'SH LEGLDL £91°€ 0 $12582°€ :eBeiony "195°dwo)
G9BbA8'Z BELL69C G96E09v 299SSE'Z GHEISE'Y L0 228668°0 Z0L69°0 uonereq pIEPLES {|B19AD
68L68L'6 2ZZALZTOZ BLEBL'9L QLESL'SE TEIZSbL SL1'e Y9140 SSLLIPE :eBeIoAY ||BI9A0
i | |
I (zi)ieuwd (s2)e wex3 (sz)z wex3 (0Z)) wexIoZhsolaid | o1z apeiD sjutod epaso |
| Bumos Bumog Bumog Bumog Bumpos | sy uj esnoy esnod |
| wejgoud wejqoud wejqoid wejgoug wead | ydgo eseeunyl o1z 0iz |

£66} lied - Hol | 8ouelag seindwod

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

215

APPENDIX D

INDIVIDUAL PROBLEM SOLVING TEST STATISTICS

This appendix consists of the individual statistics for the problem solving portion of

each exam for the test study CS/1 class. The total points possible for the Pre-Test, Exam

1, Exam 2, Exam 3, and the Final Exam were 20, Z0, 25, 25, and 12, respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

216

Table 32. Problem Solving Statistics (Actual)

Student | Pre-Test | Exam 1 | Exam 2 | Exam 3 | Final Exam
393-1 12 14 6 20 10
393-2 16 14 19 20 12
393-3 12 16 17 22 9
393-4 20 14 15 22 12
393-5 20 18 18 25 7
393-6 18 14 13 18 9
393-7 2 16 5 7 2
393-8 3 10

393-9 15 16 21 21 7
393-10 17 18 17 21 12
393-11 18 14 13 22 12
393-12 19 16 16 12 8
393-13 18 16 18 18 12
393-14 14 20 22 24 2
393-15 13 18 17 23 12
393-16 0 18 14 18 9
393-17 20 14 19 22 12
393-18 21 14 21 23 12
393-19 15 16 15 22 9
393-20 20 20 24 24 7
393-21 15 16 21 22 12
393-22 17 14 14 16 7
393-23 10 16 24 20 12
393-24 16 14 16 25 12
393-25 11 16 12 14 8
393-26 15 18 21 25 8
393-27 16 12 24 22 12
393-28 13 16 16 20 8
393-29 19 16 16 19 7
393-30 9 20 15 18 2
393-31 9 16 18 24 9
393-32 16 13 22 20 10
393-33 14 18 9 19 8
393-34 14 14 14 18 9
393-35 14 14 15 17 10
393-36 18 12 23 25 12
393-37 21 20 20 18 12
393-38 12 18 11 21 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

217

APPENDIX E

SUMMARY CS/2 COURSE STATISTICS

Tables 33, 34, 35, and 36 are summaries of the statistics for the CS/2 classes upon

which some of the validation is based.

Information for each CS/2 course from the Spring 1991 semester through the Spring

1994 semester is included.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

218

Table 33. CS/2 Course Statistics - 1991

Semester Section | Imstructor | Semester GPA | Section GPA | Instructor GPA
Spring 91 201 I-1 3.788 3.833 3.788
Spring 91 202 I-1 3.788 3.733 3.788
Spring 91 501 I-1 3.013 3.278 2.930
Spring 91 502 I-1 3.013 3.118 2.930
Spring 91 503 I-1 3.013 3.063 2.930
Spring 91 504 I-1 3.013 2.765 2.930
Spring 91 505 -1 3.013 2.941 2.930
Spring 91 506 I-1 3.013 2.571 2.930
Spring 91 507 I-1 3.013 2.583 2.930
Spring 91 508 I-1 3.013 2.875 2.930
Spring 91 509 I-1 3.013 3.111 2.930
Spring 91 510 I-1 3.013 2.769 2.930
Spring 91 511 1-2 3.013 3.375 3.203
Spring 91 512 I-2 3.013 3.125 3.203
Spring 91 513 I-2 3.013 3.357 3.203
Spring 91 514 I-2 3.013 3.222 3.203
Spring 91 515 I-2 3.013 3.000 3.203
Summer 91 | 302 11 3.347 2.769 3.347
Summer 91 | 303 I-1 3.347 3.417 3.347
Summer 91 | 305 I11 3.347 3.538 3.347
Summer 91 | 306 I-1 3.347 3.727 3.347
Fall 91 501 I-3 3.229 3.500 3.229
Fall 91 502 I-3 3.229 2.933 3.229
Fall 91 503 I3 3.229 3.063 3.229
Fall 91 504 13 3.229 3.250 3.229
Fall 91 505 I-3 3.229 3.300 3.229
Fall 91 506 I-3 3.229 3.412 3.229
Fall 91 507 I-3 3.229 3.313 3.229
Fall 91 508 I-3 3.229 3.235 3.229
Fall 91 509 1-3 3.229 3.294 3.229
Fall 91 510 I-3 3.229 3.588 3.229
Fall 91 511 I-3 3.229 3.118 3.229
Fall 91 512 I-3 3.229 3.000 3.229
Fall 91 514 I-3 3.229 3.091 3.229
Fall 91 515 I-3 3.229 3.111 3.229

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

219

Table 34. CS/2 Course Statistics - 1992

Semester Section | Instructor | Semester GPA | Section GPA | Instructor GPA
Spring 92 201 I-1 3.372 3.294 3.372
Spring 92 202 I-1 3.372 3.353 3.372
Spring 92 203 I-1 3.372 3.556 3.372
Spring 92 501 I-1 2.929 2.867 2.929
Spring 92 502 I-1 2.929 2.333 2.929
Spring 92 503 Il 2.929 2.647 2.929
Spring 92 504 I-1 2.929 2.600 2.929
Spring 92 505 I-1 2.929 3.067 2.929
Spring 92 506 Il 2.929 2.818 2.929
Spring 92 507 I-1 2.929 3.100 2.929
Spring 92 508 I-1 2.929 3.118 2.929
Spring 92 509 I-1 2.929 2.692 2.929
Spring 92 510 I-1 2.929 2.846 2.929
Spring 92 511 I-1 2.929 3.167 2.929
Spring 92 512 Il 2.929 3.353 2.929
Spring 92 513 I-1 2.929 2.769 2.929
Spring 92 514 I-1 2.929 3.385 2.929
Spring 92 515 I-1 2.929 3.143 2.929
Spring 92 516 I-1 2.929 3.182 2.929
Summer 92 | 302 I-1 2.923 3.000 2.923
Summer 92 | 303 I-1 2.923 3.000 2.923
Summer 92 | 304 I-1 2.923 2.700 2.923
Fall 92 502 I-1 3.123 3.375 3.123
Fall 92 503 I-1 3.123 3.000 l 3.123
Fall 92 504 I-1 3.123 2.588 3.123
Fall 92 505 I-1 3.123 2.889 3.123
Fall 92 506 I-1 3.123 3.563 3.123
Fall 92 508 I-1 3.123 3.438 3.123
Fall 92 509 I-1 3.123 2.944 3.123
Fall 92 510 I1 3.123 3.118 3.123
Fall 92 511 I-1 3.123 3.188 3.123
Fall 92 513 Il 3.123 3.353 3.123
Fall 92 514 I-1 3.123 3.263 3.123
Fall 92 515 I-1 3.123 2.833 3.123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

220

Table 35. CS/2 Course Statistics - 1993

Semester Section | Instructor | Semester GPA | Section GPA | Instructor GPA
Spring 93 201 Il 3.795 3.813 3.795
Spring 93 202 I-1 3.795 3.818 3.795
Spring 93 203 I-1 3.795 3.750 3.795
Spring 93 501 I-1 2.874 2.167 2.874
Spring 93 502 I-1 2.874 3.400 2.874
Spring 93 503 I-1. 2.874 3.250 2.874
Spring 93 505 I-1 2.874 2.800 2.874
Spring 93 506 I-1 2.874 2.833 2.874
Spring 93 507 I-1 2.874 2.235 2.874
Spring 93 509 I-1 2.874 3.111 2.874
Spring 93 510 I-1 2.874 2.900 2.874
Spring 93 511 I-1 2.874 2.882 2.874
Spring 93 512 I-1 2.874 3.000 2.874
Spring 93 513 I-1 2.874 3.167 2.874
Spring 93 514 I-1 2.874 2.714 2.874
Spring 93 515 I-1 2.874 3.429 2.874
Spring 93 516 I-1 2.874 2.769 2.874
Summer 93 | 301 I-2 3.233 2.933 2.933
Summer 93 | 303 I-4 3.233 3.533 3.533
Fall 93 501 I-1 3.121 2.692 3.121
Fall 93 502 I-1 3.121 3.214 3.121
Fall 93 503 I-1 3.121 3.267 3.121
Fall 93 504 I-1 3.121 3.000 3.121
Fall 93 505 I-1 3.121 3.000 3.121
Fall 93 507 I-1 3.121 3.267 3.121
Fall 93 508 I-1 3.121 2.944 3.121
Fall 93 509 I-1 3.121 3.000 3.121
Fall 93 510 I-1 3.121 3.250 3.121
Fall 93 511 I-1 3.121 2.313 3.121
Fall 93 512 I-1 3.121 3.571 3.121
Fall 93 513 I-1 3.121 3.765 3.121
Fall 93 514 I-1 3.121 3.188 3.121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

221

Table 36. CS/2 Course Statistics - 1994

Semester | Section | Instructor | Semester GPA | Section GPA | Instructor GPA
Spring 94 [201 I-1 3.500 3.600 3.500
Spring 94 | 202 I-1 3.500 3.235 3.500
Spring 94 { 203 I-1 3.500 3.688 3.500
Spring 94 | 501 I-1 2.923 3.389 3.024
Spring 94 | 502 I-1 2.923 2.824 3.024
Spring 94 [503 I1 2.923 3.471 3.024
Spring 94 | 504 I1 2.923 2.643 3.024
Spring 94 | 505 I-1 2.923 1 2.625 3.024
Spring 94 [506 I-1 2.923 3.333 3.024
Spring 94 [507 I-1 2.923 3.000 3.024
Spring 94 | 509 I1 2.923 2.600 3.024
Spring 94 [510 15 2.923 2.706 2.765
Spring 94 [511 I-5 2.923 2.938 2.765
Spring 94 | 513 I-5 2.923 2.895 2.765
Spring 94 | 514 I-5 2.923 2.529 2.765
Spring 94 [515 I-5 2.923 2.750 2.765

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

222

APPENDIX F

STUDENT REACTIONS TO WEB

The following are reproductions of reports submitted by the Fall 1993 test study group
at the end of the semester. The students were asked to state what they expected from the
class and why, their initial reaction to web programming, and and their current
reaction/feeling to veb programming. The reports were reproduced as written, with no

corrections to spelling or grammar.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

223

Evaluation of Fall 1993 CPSC 110H Students Evaluator:

Circle the appropriate response to each of the questions below.

Please answer each of the questions to the best of your ability based on

the student’'s written evaluation. If there is nothing in the evaluation

to give you feedback on a particular item, select the ‘Not Discussed’ option.

1. wWhat was the student's original reaction to being told they were going
to learn something called WEB?

] 1 2 3 4 5
Not Upset Unhappy Worth Looking Enthusiastic
Discussed A Try Forward to it

2. What do you believe the student‘s expectation of the class was coming
into the claes?

0 1 2 3 4 5
Not Beginning Turbo Problem Solving
Discussed CS Course Pascal and Programming

3. What was the student’'s reaction to the emacs editor?

0 1 2 3 4 S
Not Poor Fair Average Good Excellent
Discussed

4. What was the student’'s reaction to TeX?

0 1 2 3 4 S
Not Poor Fair Average Good Excellent
Discussed

5. What was the student's reaction to WEB programming?

] 1 2 3 4 S
Not Poor Fair Average Good Excellent
Discussed

6. How well did the student understand the overall WEB process/concepts?

¢ 1 2 3 4 S
Not Poor Fair Average Good Excellent
Discussed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

224

My Expeclations and Reaclions o Web Programming

My original expeciations for this class weren'l loo high. Before class slaried, | fell
thal ihis was jus! a hinderance fo getting on lo real, useful programming in C and thal
Pascal was jus! a necessary evil. | already have some programming experience in C so
Pascal seemed o be a siep down for me and | was anxious o gel on with bigger and
betler things. I've sinca re-evalualed my Ihinking as I've found Pascal he!plul for
strengihening some of my C knowledge and an inferesting language Hiself that has
soms very interasting big brothers (Modula-2 and Oberon-2). I've also found this class
inferesting due lo the lilerale programming we are doing.

initially, | was very excited about Ilterale programming as il was something new
and different. | was neat do know that we were privileged enough fo be the first
undergraduale class fo get o try ouf this method of programming. |l was also
inferesling o find oul thal karge companies employ this method of programming;
something of great value fo me as | want lo lsam things thal | can readily apply outside
ol college. The format for programming in web mode, initially, seemed helptul for
focusing on the problem and | could definilely see the advaniages it had for mainiaining
code.

Currenfly | hava a lew problems with web programimiing. Firsl, it seems that I'm
doing alol of redundant, unnecessary wriling/programming. | find myself listing out
something for the T.X document only lo be typing out a similar list for the Pascal code.
Second, | slrongly dislike the implemeniation of emacs we are using. i's entirely
antiquated and its user Inlerlace (or kack thereof) is very poor. | feel like I'm back using
Word Perlect v1.0 when | know Word Perect v6.0 or whalever is oui there. Finally,
when working with complicaled programs, like lab 4, the web style seems lo gel in the
way alof and | find myseli gelting langled (no pun Intended) when irying fo change
hings or when trying Yo get things 1o work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

225

Great Expectations?

1. What did you expect from this class and why?

I expected, from Computer Programming 1 Honors (CPSC 110H), a chalicnging PASCAL class
with group analyses and discussions, group projects, and a large main project for the end of the
semester. 1 believed this because that is what 1 have been associated with in all of my Honors
programs before. [expecied the learning of PASCAL 1o be quick and in depth so that by the end
of the semester we could do many interesting and complicated things with the computers.

2. What was your reaction/acceptance to web programming?

My initial reaction to web programming was total disgust. 1 felt that T had been tricked into a
cours¢ which was just off the chalkboard. We were told that we were guinca pigs, and | fel like it.
If | did not enjoy PASCAL, compuler programming, and a new challenge so much, 1 would have
dropped the course and changed into the regular 110 class which is all PASCAL. Therefore, my
initial reaction to the web was surprise, but I accepled it becausc it was a new horizon that | knew
nothing about.

3. What are your current reactions/acceptances/feelings/.. to web
programming? How? and Why?

Although 1 was disappointed with the class struciure in the beginning, 1 have begun to grow
anached to web programming. Just as in all programs, there are things thal are special that [like
better than other programs, but there are also the things that I find annoying.

I like the way webs produce such nice documentation. It is very understandable, and it looks very
organized and professional. It makes me feel guod when | finish a program and it comes out with
such a nice output along with a program.

On the other hand, there are many things that I do not care for in web programming. For the keys
are not always what they seem, like the backspace key for example. Those things are hard to get
uscd (0. Another thing is the continuous auto-save function. 1t is really distracting and it can break
your concentration casily having to wait on the computer. Finally, the lack of knowledge that we
were given on the webbing was also a disappoinument. The program designs could have been cven
better and more exciting if we would have had a little more information.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

226

My Thoughts On TeX and WEB In The Comp Sci 110H Atmosphere

1. What di1d you expect from this class and why?

Unlike the ususal computer science 110-H student, I am neither a
freshman or a computer science major. I took the class because 1 liked
learning about the computer, and I wanted to be able to use a variety of
high level languages proficently. | took a regular programming class my
freshman year, and 1 was bored to tears. [took an honors class in the hopes
of learning useful applications of pascal and naving mentally stimulating
programs that would challenge my intellect, not just my ablitity to enter
code.

II. What was your reaction to WEB inmitially?

At first, I felt confused. Like most young adults., ! am very eager to
learn, and when knowledge is kept from me, I get very frustrated and confused
I wanted to learn about the WEB and Tex immediately. I felt that the
information was not given out in an organized manner, and thus I really
dian’'t view WEB as important or necessarily useful. Maybe 1f 1t hag peen
taught 1n a more organized manner, [would have.placed more importance on
11. However, | was i1mpressed by what services the WEB could offer a programmer.
I could definately understand 1ts usefulness to a programmer who had the
responsiblity of a project li1ke X-Windows, and 1 also understood that it
was necessary for me to learn how to manipulate it with relatively simple
programs first. Ovarall, despite being sceptical, I was perfectly willing
to give WEB a chance.

[[1. What are your reactions to WEB now?

Now that I know much more about WEB and Tex, I can utilize more of
its features and can appreciate 1t‘'s value more. However, [feel that a
way of documentation that requires less work by the programmer will evolve
ana that WEB s just a phase iIn the developement of such a tool. I am glad
that [am learning i1t, and | ao feel that 1t has a proper place in the)
comp sc1 110-H class, but I also think tnat future classes wil) be using

other metnods of documentation and organization for their programs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

227

Assignment #1

1. What did | expect from this class and why?

I expected a challenging programming course in which we would learn vast
amounts of PASCAL quickly. Through our knowledge of PASCAL. I expected to write
complex programs that went above and beyond the programs I had previously written in
high school. Through these programs, I expected to acquire complex problem solving
skills as well.

2. What was your reaction/acceptance to Web programming initially and why?

Initially I didn't like Web programming. | thought it pretty senseless, had no
meaning except to take up more of our time. I thought that there wouldn't be practical
benefits from knowing Web. I have never really liked documenting my programs much, so
naturally a system designed around documentation wouldn't appeal to me.

3. What are your current reactions / acceptance / feelings to Web now? and why?

Now that | know Emacs well enough to get around, it is not too bad. I still don't
enjoy programming in it much. It seems to make it harder than it actually is. I do see the
advantages of documentation such as organization and the ability to emphasize portions of
the program. 1 understand where documentation is important to me as a programmer as
well as other programmers who read my program. The Web system, though, just seems
too complex for something that is elementary, at least to the extent that we use Emacs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

228

1. What did you expect from this class and why?

When 1 enrolled in this class, 1 was under the impression that it would be strictly a course
in PASCAL programming. | was told during my summer regisiration conference that Computer
Science 110 was a computer programming course that focused on the use of PASCAL. Whenwe
were told on the first day of class that the emphiasis in this course would lis meinly on problem
solving | was fairly surprised, but I did not think I would find itas difficult as it has tumed out to
be. Because 1 have had absoluiely no prior expericnce in PASCAL or WEB programming, |
have hed same difficulty adjusting to this class. Although this course has turned out to be nothing
like what ! expected, 1 still find it very interesting and 1 am learning more than | probebly ever
wanted to know about computers, PASCAL, and this wonderful new thing called WEB
programming.

2. What was your initial reactionfacceptance to WEB programming?

After our first expoaure (o WEB programming in this class, | decided that | hatedit. 1had
absoluicly no idea what those funny commands meant or how they created such neat output, and
all the talk about EMACS, WEAVE, TANGLE, and TEX made things even more confusing for
me. [couldn’t understand how this new type of programming was supposed to make programs
casicrto read and more understandable, because it only made things even more confusing for me.

3. What are your current reactionslacceptanceifeelings to WEB now? Why?

Afier working with WEB programiming sinoe the beginning of this semester, | amhappy to
say that | think | almost undersiand it. | atill have no idea why the codes [enter produce such
professional output, but at kast now | can finally produce output. However, I still do not think
that WEB programming makes programs more understandable. 1 think [would much rather have
a pure PASCAL program in front of me ihen spend hours flipping through chapters, sections, and
small picces of code trying to find the information | need. Alibough | think [sill pretty much hate
it,] am trying my best to adapt to this ncw method of programming, and I hope that someday
(preferably pretty soon) [will discover the benefits of WEB programming.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

229

Web HomeWork
1) What did you expeet from the cluss”

! thought that the class would deal with the normal inroductory aspects 1o Pascal. On the first day
of class [heard the teacher stress that the class was not "Intro to Programming" at all, we were to think of
it as problem sohing. This did not bother me, I just thoughi that it mcant this class was legitimate. And
as far as Pascal, the course has been everything | had expected because | managed to ia'se a lot of this in
high school and have my own computer .

2) What was your reaction to web?

At first, 1did not take it seriously until I realized how much more there was to every assigned
problem than just an hour of Pascal. Actually, for the first couple of weceks following the first project |
was pretty upsct with web and thought it must be a crutch for people unfamiliar to programming. The
real reason | did not like web was that with it hurt my gmdcbin the class,

3) What do [currently feel about web?
By now. | am comfortable with Web and have no probleni with at. Since | have had some
experience with Pascal beforehand, I'm sure | would have found it simpler if we learned on that soley but |

can see why we use Web now.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

230

Homework Assignment
CPSC 110H

1.) My expectations for this class consisted of
obtaining a more thorough knowledge of Pascal. I had
already learned a little bit about Pascal in my high
school computer science class, but I was hoping to gain
a more extensive knowledge of Pascal in this class.
Even though my class last year was a whole year and
this class is only one semester, I expected we would
cover more in this class just because it is college and
more independent work can be given.

2.) I had mixed reactions when I heard we would be
using WEB programming. I was kind of apprehensive
since that would mean I wculd have to learn another
language just to program in Pascal. However, since WEB
programming is used in the real world, I was glad I was
getting a chance to learn it. Thus, overall, I was
happy we were using WEB programming.

3.) After learning the basics of WEB programming, I
have come to like it. Although it took a while to
learn some of the basic commands, it is now just as
easy to use WEB programming as it is to use the plain
Pascal Editor. It also allows for easier and more
complete documentation. Furthermore, it is also
beneficial to me since now I am familiar with one more
programming tool and may have a need for it in later
life.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

231

1. Before I started this class, I thought it would teach me more than the
average class about PASCAL. 1 thought that it would go in greater detail
about the intricacies of PASCAL, I never thought that it would be more on
problem solving. All the honors classes I have been in just speeded up the
learning process, trying to fit as much information into the time availabe.

2. When we first started this class, | was wary of how good I could do in it
without having any previous programming experience. When | found out that
we were programiing in an environment new to everyone I knew that |
would have an easier time in the class, getting a good grade, etc.. 1 had never
heard of WEB programming, I didn't know what to think. I had no problem
accepting it because 1 had no idea what it entailed.

3. Afier programming with WEB, I don't understand the need for it. |
understand that it helps with the programs readability, but a good programmer
should be able to make a very readable program by using comments. It might
make it easier to night modular programs, but it also makes a beginning
programmer lazy in his programming practices. | also found that it confused
e because it was hard to remember what | had and hadn't done until
compiled it. Not only that, but in order to compile it, you have to go through
many steps that seems to make the dcbugging process much more difficult
than with a PASCAL specific editor. I can understand, and appreciate the
Emacs editor in a UNIX environment, but cannot understand the reason for
using it as an introductory course when you should worry more about the
PASCAL of the program.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

232

1) What did you expect this class to be, and why?

I expected this class to be a little tougher. 1 expected that we would have covered the
material much more rapidly. 1thought that in an honors class, everyone would have
known Pascal already, although now I see that this isn't the case, and I'm quite glad for
that fact. 1 was glad to see that in this honors class, there was a certain unity that isn't in
any of my other non-honor classes. | was quite disappointed, however, that we weren't
taught any audio or visual concepts.

2) What did you think of Web, in the beginning?

I've had mixed feelings about T, X and Web. At first when I had heard about it, but
hadn't used it, I thought that it was a good programming idea, which 1 still do. However,
once I began using it, I didn't care for the demacs editor. I also disliked all of the T, X
commands we needed to leam. 1understand that T, X is the primary editor for writing
technical documentation. I also know that it completely supports Web mode, which is a
quite handy, yet I feel that there must be a better editor that we could use, that would also
support Web.

3) What do you think of Web now?

Now I think that Web mode, in theory, is an excellent idea. 1also think that in practice it
works quite well. The only hesitations I have is with the Demacs program, and some of
the limits of the Weave program. 1 really have grown to hate the auto saving, and the
capitalization problem. In my opinion, no programming language should be case sensitive,
including Weave.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

233

1) Upon roélslorlng for this class, my first feeling was alation. | had the
very last , | do maen lest, registration Needless Lo say, my schedule wasnt
exactiy what | haa wanted. | filled the last averlable seat in tms class |
took two years of advanced placament pascal in high schoal. Of course that
sounds & lot better then 1t actusliyis My teacher moved very slowly In
Lw0 yeers we covered pascel up Lo records, files and orrays This £lazs mst
8very dsy ena wa only nad four paople 1n 1t. Daspits ner fallacies, deesr
Hrs.Gano was thorough, so | 013 {ael configent with what hittle | 1 bnow
expectad this class would brasdan and enhance my pesce) knowledge

tirs Gano did not betieve tn turbo, sa | gid expect (hope) ta learn some lurbs
JASFAL LA pat axnAnd Jn RA knawndys aame it LS s LAut ant Ayt Lo
spend my coilege Hife 1n the computer 18D, but {'ve adjusted | certainly dii
not expect web mode programming, which 18ads 10 the net question

2) The only word | cen think of 10 bast 0&sCribe my redclion 10 web made
progremming I6 confusion Kot a dlurry confusion, or even & puzzied
confuston, | was complately and utterly cluelessly confusead The secani
chotce word would be why? | tried Lo be open minded even though | could
not see eny ‘method to the mednass’ Even afler the completion of our first

lab | had no tdee how {6 uss wab mode Mrs Gano, bless her heart, was 6 firm

bellever In atruclured progienuming Every detatl, copitalization, spaiing
wlc hed to be flowlass, orderly end organized | 313 nol knaw haw Withare
the transformation and | was annoyed that most of miy peers Nd when 1irs:
Introduced to web mode, 11 1: 1415 Lo 38y Lhat | d13 ndt ket 8t 4 nic 35

understena it.

3) Wiser and more schooied in the warld of web, | have come 10 sccept web
moda end éven see 1t's good points. 1t requires 8 different approsch 1o
writing 6 program that tsn't ell bad. it would be very easy for & non-
programmer to read & pragrem written in web and fully understend the aim
of the progrem. IU's nice to know how Lo do somathing other then just strict
pascal. And there s 8 cartain joy In waeving and Lexing and not getting any
arrors thet could not be attsinad any other way | would not use web Lo
write 8 program untess 1t was réquired, but | mignt if | hadn already b rw..
pascel, but 1f | wes required to {1l vould be okey

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

234

Assignment iResponse to WEB Programsing
Questions
1. What did you expect from this class and why?

To begin, I was expecting CPSC 110 H to be a "review" class from my
point of view. Having learned Pascal in high school, I felt that I had
mastered moszt of the concepts that dealt with the language. Although I
understand it, I tlgd problems dealing with refreshing my mind to specific
syntax. (Examples: where and whers not to use quotes with characters,

accossing specific fields within records, etc.)

2. What was yourreaction/acceptance to WEB programming initially?

Mter sncountering WEB style programming for the first time I thought
"What bored person came up with this system?” I could not imagine why someone
would want to get into my program and read page after page of documentation in
order to see how my program functioned. I was always accustomed to worrying
about whether or not the program works and not writing a “paper” on how it
would work. Compared to ueing Ihink Pagscal, the editor I had previously used,
DEMACS was a nightmare. The user interface wae terrible and having to
memorize five thousand differsnt keystrokes was not fun. I was aleo boggled
by all the Tex commands that were being thrown in my face by Pete. Tex
coomands were & pain to learn and the time consumed learning these commands
really got me frustrated. PFor further elaboration on my initlial feelings

concerning WEB please see the illustration provided.

3. What are your current reactions acceptance/feelings to WEB and why?

At this tims I understand why WBB programming can be useful when dealing
with the design &nd maintsnance of a program. I suppose I never realized that
these two concepts were the most important aspects of program design. In
addition, it is easy to pick up where I left off with ocut having to review
what I did previously. As for DEMACS, 1 still hate it; WEB keystrokes are too

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

235

numercus and are a hassle. A pull down menu or mouse interface would be a lot
more convenient. Tex can be confusing at times but once I start using certain
commande regularly I think that the time consumed wiliAreduced. Algo, I find
that going to and from DEMACS in order to compile, wea3:, tangle, tex, and
edit is very inconvenient when it comes time to debug a program. I probably
spend twenty percent of my time in the lab walzing for tha machine to re-
tunglo; re-compile, and reload WEB every time I find the smallest bug. Then
again, I may just be one of the few people who is that picky. Please see my
second illustration to give you a better idea on my current feelings towards

"After WEB
Before WEB

T'l
1

Illustration 1: Initial reaction towarde WEB

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

236

Illustration 2: Current Peelings towards WEB

U

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

237

n\
-
=S
-
“3
[&]
3
1¥7]
r
i
-
wn

Expectations of Computer Scienc

1) What did you ezpect from this class and why?

Being completely new to the science of computers, I was
rather unsure as to what to expect from this class. I had
declared my major as Computer Science because I enjoyed working
with computers using applications software such as WordPerfect,
Display Write, Quicken, and, of course, games. [was also fairly
knowledgeable with commands and functions of DOS. However, 1 had
no idea how similar programming was in comparison to simply using
software. | suppose it was this extreme lack of knowledge in
reference to programming and computers overall that enticed me to
take the Computer Science 110 Honors. 1 hoped that since the
class was much smaller, I would he able }o grasp the prograﬁming
concepts and applications more rapidiy than if | had taken the
regular 110 course. [also hoped to discover whether or not 1
truly wanted to make Computer Science my major and my cﬁosen
profession. [was quite relieved and a little excited when I
discovered that 1 enjoyed programming a great deéal, but, more
importantiy, I enjoyed the design process the most. In essence,
1 was hoping to discover through this course whether or not I
would enjoy spending the rest of my life designing programs. As
of right now, [have been very content with what | have learned

in thi1s class, and my expectations have been met 1n full,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

238

2) What was your reaction/acceptance within the first couple of

weeks to WEB programming? Why?

Since [have never programmed befure this class, my
acceptance to WEB programming was aimost immediate and
unquestioning. After all, I wus unfamiltar with all other types
of editors and did not have a clue as to the advantages and
disadvantages of using EMACS 1n comparison to other editors such
as Turbo Pascal. Putting aside this apparent lack of experience,
my first 1nitial reaction to WEB programming was one akin to
surprised amazement. aAfter all, [was fascinated with the fact
that EMACS not only read our program code amid the multitudes of
text, but also ripped out all of onur documentation (through the
TeX function) snd made an extremely nice, professional guide to
our programs. To put it simply, 1 was very impressed with WEB

programming and its many advantages.

3) What are your current reactions/acceptances to WEB

programming? How? Why?

To be quite honest, I bulieve that I am one of the only
students who actually still believes Lthat WEB programming is
worth all of the extra work and documentation i1t requires. Since
I am new to programming, | believe 1 see the importance of

careful and accurate documentation to help gurde individuals

R . L .
eproduced with permission of the copyright owner. Further reproduction prohibited without permission

239

througﬁ the program, 1 have finally had an oppurtunity now to
work with the Turbo Pascal editor, and I am wholly convinced that
WEB progranming 1s quite a bit more advanced and advantageous
than the Turbo Pascal editor. WEB programming allows so much
more opportunities for good documentation than other editors. It
is quite easy to get lost in the code of a complex program, and,
if it wasn't for the neat documentation that EMACS allows a
programmer to place with the code, it would be very difficult to
follow the program through 1ts entirety. 1 am an avid supporter
of computer designs (probably because I would get lost in MY own
code if it wasn't for the design to help guide me through the
program), and WEB programming 1s the most efficient editor in
aiding documentation and design that I have encountered. As a
result, [have accepted WEB programming as the most effective
means for writing code AND for writing neat, professional

documentation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

240

1. What did you expecl from this class and why?
| expecled to be in a boring cless and gel an easy-A because | have had
2 years experience in PASCAL . However this has not been the case. |
feel that | have learned belter programming style. elc. from this class.

2. Whal was yourtesclion/acceplance/??? lo WEB programming initially and
why?
A first | thoughl thal WEB programming would would make il easier to
wrile programs since you don't really have lo worry about order quile
as much as in convenlional programming.

3. Whal are your current reaclions/acceplance/feelings/??? Lo WEB now and
vhy?
Now thal | have more experience with WEB | don't like it as much. |
have found Lhal the small smount of ease in programming doesn'l
compare to the headaches caused by using WEB. Overall. lhe concepl is
great bul lhe actions leave much lo be desired.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

241

Opinions of CPSC 110

1. What did you expect from this class and why?

As a freshman, my expectations for computer science 110 were only
a part of my expectations for coliege as a whiole. My flrst semester of
classes brought with them several individual expectations.

However, my expectations for the computer sclence class were
considerably higher than for my other classes. One reason for this Is
simply because my major is computer science. { would naturally be
anxious about any computer related classes.

Another reason for my high expectations is the fact that I enrolled in
an honors sectlon. Iwas prepared to face a rather small ciass with a more
personal fecl to it. By comparison, | am just a face In an extremely large
crowd In my other classes. 1recelved the impression during registration
that honors courses are more difficult than the other courses. Therefore,
came into the class expecting a more difficult work load than the normal
computer sclence sections. | must admit that at times, writing the
program designs and program code seem like an enormous amount of
work. However, | generally enjoy programming, and 1 am usually pleased
to see the results of my work.

The one thing that 1 expected most from my computer science course
was learning the Pascal programming language. [had read the course
description in the undergraduate catalog, so I new that Pascal was the
language used In this particular class. Even before | read the student
catalog, though, | knew that | would be programming In Pascal. | had
talked to several people who had taken the course, and 1 was told by my
high school computer sclence teacher that generally Pascal was the initial

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

242

language taught at universities.

I expected my computer sclence course to contain a degree of
problem solving. However, I never expected It to be stressed as much as it
has been. 1 have always enjoyed programming, not because of the
language itself, but because of the opportunity It presents to solve
problems. The one thing that | enjoy most about programming is being
able to come up with a solutlan to any given problem, and more
importantly, to come up with a solution that works. Obviously then, 1 was
prepared to encounter problem solving, but | expected the course to focus
more on the Pascal language.

2. What was your reactlon/acceptance to web programming
inttlally and why?

Before this class, | had never heard of web-mode. 1 had never heard
of Emacs or TeX. Even though [previously had used computers
extensively, most of my experience with them had involved elther a
Macintosh or windows based applications. Therefore, when discussion
turmed from Turbo Pascal to web-mode, | became completely lost. It was
all foreign to me. I immediately became apprehensive and worried about
the class. Because | knew nothing about web-mode at that time,
mistakenly assumed that It was something obscure that 1 would never be
able to comprehend. '

Thankfully, the class eased into the web-mode material relatively
gently. My initlal shock gradually wore off, though 1 stili had several
doubts. 1 feared that I would have to spend long hours mastering the
information necessary just to write a Pascal program, something | had
previously had quite a bit of experience doing. The experience made me
realize that there was more to programming than just knowing a high-
level language, and that I did not begin to know as much as I though 1 did.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

243

3. What are your current reactions/acceptance to web-mode and
why?

Desplte my Initlal reaction to web-mode programming, | have started
to really like it. It has proved to be much easler to master and use than |
originally thought.

Web-mode adds a rather strange twist to programming. It is
certainly a more preferable means of documentation. This method
provides a neat, good looking report. When compared to trying to sort
through the documentation as it appears In the listing of a Pascal program,
it Is a wonder that anyone could not prefer web-mode. The web-mode
documents logically structured and easy to read. 1 love the fact that it
automatically creates a table of contents and an index.

Web-mode provides a wonderful way to create a modular program.

1 find 1t much easier to work out a problem step-by-step when using web-
mode. 1like breaking down the problem Into every little detall and then
finding a solutlon for each of them. 1don't feel as restricted when |
program; 1 don't have to stick to strict, standard problem solving methods.
Instead, 1 can stmply solve each problem in an order that makes sense to
me, and therefore, hopefully also makes sense to anyone reading the
document.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

244

1. Before I had registered for CPSC 110 I had talked to Ms. Rierson who is my
academic advisor from the MEP (Minority Engineering Program) office about what
this course would be about in general. Basically, what she told me is that it was a
programming class that Implemented Pascal. I had taken a Computer Sclence class
using Pascal in high school during my junior year where I was taught programming.
So, naturally I thought that this class would also be a class that focused strongiy on
the language of Pascal and coding techniques. 1 expected to learn how to program
in Pascal and become well versed in its syntax and special features. These were
areas that my Computer Science class focused on in high school and since I used
the same book then as we are using now I thought the class would be basically the
same.

2. Prior to the first day of CPSC 110 I had never heard of WEB programming
and its style and syntax were quite a change from what I was used to. At first, I
was completely overwhelmed, because | thought we were going to have to fearn
several brand new computer languages (WEB, Tox, TANGLE, and WEAVE). I

thought that these were new programming languages and that I would be
completely lost. '

However, when I finally understoud what WEB was used for, my anxiety
gradually subsided, because I realized that learning WEB was supposed to help
coordinate my thought process and organize my design so that the flow and
readability of my program would be optimal. I was still a little worried afterwards,
because I was not sure if] would be able to hand!e Pascal and Demacs.

3. My opinlon of WEB right now is slightly different. Afier I realized that it was
supposed to enhance my program I was really interested in learning it, but as
deadlines came around I realized that, although WEB was supposed to improve my
program it, succeeded more in delaying its completion. However, I must admit that
it takes out a lot of the pain that accompanies actual internal documentation of the
program itself.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

245

As a matter of fact, if had not been for the documentation that 1 had done in
Demacs there would be some problems that would have been more difficuit to
solve. In summary, my opinion of WEB is this: If I manage my time working on
the lab assignment, then WEB enhances my program a hundred-fold, but if time {s
short then WEB, becomes a great hindrance to the completion of the program
itself.

Re . . .
produced with permission of the copyright owner. Further reproduction prohibited without permission

246

Computer Science Expectations and Fullfillments

Since Computer Science 110 is required for my major, I didn't read the course description in great
detail. The only expectations I had for the course material were Lo learn another programming language and
to write programs for a grade. I chose honors because I knew the class would be smallet, the programming
would be more complex, and because I could register early. I also wanted a honors class because it is casier
to get individual kelp in a small class environment.

When I first used web to write a program, 1 didn't like it because it was more time consuming than
simply writing code. I’ve always used descriptive variable names, but I've never documented my programs
before. I was against web because [felt it was a waste of time to-describe every step in detail. 1 can see
the logic behind the whole design process, but it's still a pain to manually calulate every test case, and I
still don’t understand the purpose of having an abstract when | say the same thing in my introduction and
problem description.

Overall, however, I see more pros than cons. The process of weave, tez, tangle, and tpc makes debugging
easier. The autosave feature of web is convenient for me, because it allows me to concentrate on what I'm
typing instcad of worrying about saving my file in case the system crashes. Even though it can be annoying
when ['m in high gear and in the middle of a complicated thought or edit, | know autosave will save my
sanity one day when [think I've erased my entire file.

Ithink that this class has taught me moze than if I had just taken the non-honors class. 1 now know the
benefits of using an editor, and the necessity of the design process. While the web system has some quirks
that take some getting used to (like using del instead of the backspace key), it seems to be a better way to
program.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

247

1. What did you expect from this class and why?

To be honest, I really didn't know what to expect from this class. Iknow I
initially worried about being the only person in the entire class that didn't know
Pascal (which I wasn't). I also worried about taking this class in an Honors section
with no pervious computer programming experience, except in high school.

I wasn't too worried about learning the code itself, because my boyfriend,
Clint, assured me that I would pick it up quickly. So, far I have struggled with
some of the concepts with the code, but I feel that is probably due to the speed at
which we cover the material. Overall, I feel that I am learning the main concepts

of Pascal, and I an beginning to feel confident in my programming ability.

2. What was your reaction/acceptance /feelings to WEB programming initially?
Why?

I was overwhelmed by the thought of not only having to learn Pascal in an
Honor's class, but to also learn an editor. After the first couple times on the
computer, I began to feel more comfortable with WEB. On the shorter
assignments, I was pleased with the results and enjoyed making my initial designs
look good. It was a challenge to not oniy write a good design, but also make the

appearance of this design look desirable too.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

248

3. What are your current reactions/acceptance/feelings to WEB programming
now? Why?

After writing numerous labs on the Web editor, I have decided this type of
documentation is for the birds. Irealize the importance of documenting one's
work, but the amount of agony and grief spent oh these programs was not worth
the output. The more complicated a design became, the more time I spent on the
web documentation. In the last couple of program designs (after the inital design
is due), I have found myself spending more time "weaving", "iangling", “texing",
and auto saving than I care to mention. If these processes did not take so much
time, I would have little objection to using such an editor.

It would also be helpful to design an editor that could be used with a mouse.
The process of cut and paste is quite evil with WEB, and by using a notebook on
my PC or the edit mode in DOS, I can cut my editing time in half.

1 also feel that if is totally unfair to test student over Emacs commands. This
memorization is not only a total waste of brain power, but also a waste of time,

especially since you provided the class with emac “cheat sheets”.

Overall, I have really enjoyed this class. I don't want you to think because I
dislike WEB that I haven't enjoyed the work I've done in this class. I feel that the
time spent on WEB, might have been put to better use somewhere else. But, then
again, I could be wrong. I have noidea how important documentation is, or how
effective this editing program can be. I am just iearning. Ma'ybe with enough
exposure, I would learn to like WEB or maybe some other editor like LATeX. But
again, I have enjoyed the problem solving aspect of this class. It is a challenge that

I have enjoyed struggling with.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

249

1) What did you expect from this class? and Why?

I expected to learn a program language. I was not
looking for problem solving skills. I am a Math major and
this is the only Comp.Sci. I have to take. I took the
Honors section because I wanted to register early.

2) What was your reaction / acceptance / ... to web

programing initially? and why?

I was OK. I have nothing to base my reaction on,
because I have no previous experience. It is helpful for
short programs and It help me because I didn’t know how to

program at all.

3} What was your current reaction / acceptance / feeling

+e. to web now? and why?

I hate it. It Clutters the file. I wish I could just
write a program. I can see why YOU would use it but for
me it is a pain. It takes to long to open the demac§ file

it takes to long to tangle and tex and weave.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

250

What did you ezpect from this class and why?

When I signed up for this class, I did not know what to expect. I signed up for the class because I am
interested in taking a Al course (CPSC 320). In order to do that I either had to take ENGR 108 or CPSC 110.
Being a Biochemistty Major, ENGR 109 has absolutly no bearing on what [want to do in life. | took CPSC

110H because I figured the class would provide me with the background necessary to prepare me for CPSC
120 and eventualy CPSC 320.

What was your reaction o WEB programing initially and why?

Initially, I looked at WEB programming as interesting and was looking forward to doing it. I have had
very little experience with Pascal in the past and saw the need for the documentation. I have looked at
programs in the past and not understood anything about what they were trying to accomplish. This causes
great problems when trying to modify the program.

What is your current reaction to WEB now and why?

I still enjoy the WEB programing. The problem I have is the efficency of the interface. The time it
takes to launch emaca and then the time it takes 1o tangle, weave, and TEX the WEB program is excessive.
Emacs is a tedious way to debug a program because every little change requires changing the WEB source
code and then tangling and compiling the code. This takes a large amount of time that could be more
efficently used in editing and debugging the program in a Turbo Pascal editing environment, but in doing
this the programmer must go back to the WEB code and change the Pascal code later.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

251

When I decided to take Computer Science I was expecting to leam to program in
Pascal using TurboPascal. 1did not know of any other Pascal editors, nor did I know of
Emacs, WEB mode, TgX, or weaving and tangling. 1 thought that the honors part would
involve only maoge in-depth programming and maybe an accelerated pace. This is what 1
was expecting from what I had experienced and from what I had beard.

When I found out we were going io use Emacs, it wasn't a big deal, it was just a
matter of leaming a few command keys. However, WEB mode programming was
something totally alien to me and the thought processes involved seemed totally backward
to me, but I thought it had possibilities. Isaw the benifits of WEB and was prepared to
learn it. This acceptance did not endure long though.

After being repeatedly foiled in my atternpts to add Pascal in to the TpX material I
developed for my first lab, 1 began to really dislike the backward way in which we were
programming. Additionally, the lack of a practical method of drilling myself in the Pascal
I was learning from the book and the lecture soon left me drowning in a whirlpool of
incomplete labs and assignments. 1am still a little shaky on Pascal itself, and bave no
clue sbout plugging the little Pascal that I do know into 8 WEB file in such 8 manner that
it functions properdy. Ilikethedocmnenmionpmd\mdbyﬂnwmshnwuﬂdl;emnh
happier using straight programming in TurboPascel with intemal documentation in the
program, not & program within the documentation '

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

252

#hat I Expected From This Class

After reading the course description of Computer Science
110, I was unsure of what to expect. By the wording in this
description, I expected the class to be more lecture oriented and
less programming. I thought this class would just be an
introduction to the process of programming. I did not expect us
to jump intq programming as fast as we diq. I figured that the
first semester we would learn the practices and the second
senmester we would put them to use.

Also, I thought that I would have no problems with this
course. Such is not the case. I must say that I have not
reached my goals in this course. I guess I thought that since
all the other courses in computers that I have taken have been
easy for me, that this one would be too. That was a bad
assumption.

The final thing that I expected from this course was the
closeness that accompanies having small classes. I thought that
since this was an honors course the class would be closer as a
whole that in my other classes. For some reason I expected this
class to be more similar to my honors classes from high school.
My honors classes were very close and the students had a very
close relationship with the teacher as well as each other. I
guess comparing high school classes to college classes was naive
on my part, but that is vhat I expected. I am sure that students
in this class will cross paths again.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

253

My Injitial Reaction To WEB Programaing

My initial reaction to WEB programming will probably differ
greatly from other students due to my lack of previous experience
with programming. My first reaction to WEB programming was one
of utter confusion. As far as including the definitions and
explanations within the program body, this was something new to
me. I had no idea what the "limbo" material did. To tell you
the truth, I though that was part of the PASCAL program. For the
first program I had completely no idea what was going on. I was
trying to figure out what the individual statements in the
"1imbo" material did. As you can tell, those first two or three
veeks were very tense for me. Later on, I formed different
opinions about WEB programming.

By the second program I felt more comfortable using EMACS.
During this phase, I felt that doing the design and then “filling
in" the code was a pretty good idea. I also liked the fact that
longer descriptions can be used and still be understandable.

)

This phase lasted up until about the fourth and fifth programs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

254

current Feelings About WEB Programming

Recently, I have formed new opinions about Programming using
WEB mode. Up until the last few programs, I had a pretty high
opinion about using it. Now, I am not really sure how I feel.
WEB programning has its advantages and disadvantages.

On one hand, I like how the output is formatted. I also
like how the text and code is integrated using WEB mode betteér
than it would be otherwise. The thing I llke most about
programming using WEB mode is being able to declare variables or
anything in any order and call them in the main program. I would
like WEB programming even more if I knew how to do more of the
specialized procedures. MHore handouts with examples would help.

More recently I have diescovered some of the disadvantages
that ere associated with using WEB programming. When working
with longer programs, the compilation and similar processes are
much more tedious. If you do not make programming errors, IX
guess you do not have to worry about correcting them. But if you
do make mistakes, then correcting errors with WEB progra;ning is
also very tedious. It would not be so bad if you did not have to
close your EMACS file every time, but you do. .

My opinion about WEB programming changes nearly every time I
use it. Right now I can not decida whether EMACS is more of a
help or hinderance. It is slow, but the printed product looks so

much more elegant. Which would you rather have?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

255

Evaluation of CPSC 110

1. Wwhen I enrolled in Computer Programming 110 I was expecting
a class that whould teach me the basics of programming in Pascal.
In taking a honors I was expecting to be in a class that was
taught with a greater degree of knowledge and to s class with
higher degree of intelligence. I was also expecting the class

to be taught be a professor who whould teach the Pascal language
to a greater degree than a regular class professor would. Not
knoving how to program in Pascal was one of the draw backs of
signing up for this class but I figured that I would learn more
in the class if it was an honors class than a regular class.

2. As I stated in the previous paragraph I have not programmed
in Pascal before so I do know the differences between web
programming and other types of systems. In my untutored opinion
the web program is very helpful in putting together a program
that is very easy to understand and also very easy to correct
if there is a change in the program. I really cannot give any
comparisions between this style of programming because of my
lack of knowledge in this subject. I have howsver tried to
program in turbo pascal and found that web style of programning
was easier for me however, I am not sure if it is just that

I am used to the web programming so much that everything else
is just foreign to me.

3. Right now I feel that the web mode is a very useful tool

for programming in Pascal. 1If it wasn't for the web programming
system I do not feel that I would be able to complete any of

my programs to the degree of accuracy that so far all my programs
have been. The web programming has helped me to understand

how to program in Pascal better than any other program probably
would. The only thing that I noticed about the turbo Pascal

that I wish was on the web programming was to be able to show

you exactly wvere your errors are while the program is still

up on the screen.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

256

Question 1: What did you expect from this class and why?

--Before I started this class in the fall, I expected several things from it. Being an honors
course, I expected the class to move at a quicker pace and to cover more than a regular
course. I expected hands on experience with current hardware and software because of
the large amount of resources available at Texas A&M. I expected to learn a little about
the campus computer network because, as a Computer Science major, I will need to know
how to use the computer facilities. I also expected to gain some knowledge about the
current computer industry, realizing that the purpose of college is preparation for real
world involvement. Last, I expected an instructor who is enthusiastic about teaching.

Question 2: What was your reaction to Web programming initially? Why?

After the first few lectures and before working extensively with Web programming, I
was confused about how it worked and didn't see any dramatic differences between it and
the Turbo Pascal editor. I was unsure of Web simply because I didn't have any experience
working with it. It was just an abstract idea in my mind and its uses were vague to me.
However, 1 did accept the program and was eager to learn more about it. Now that I
reflect on it, I do see that my current impression of Web was formed by being open
minded and by willingness to accept the program beyond its initial presentation.

Question 3: What are your current reactions to Web? Why?

Now that I have been able to work extensively with Web, I see that it is a very useful
tool, and I enjoy doing labs with it. I believe it is useful because of the way it forces
organization and the emphasis it places on planning. I am beginning to understand the
importance of program documentation, and 1 realize that Web is very valuable in that
regard. I enjoy working with Web because I enjoy writing, I like the style of dogumenting
text that Web uses, and I like the control the user has over the output. My overall
impression of Web now is positive. I do see the advantages it has over the Turbo Pascal
editor, and I am glad I have the chance to use it.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

257

Programming 1 ?

I knew this class was a programming one because of the title and
description in the 116th Undergraduate Catalog. Plus, I had a good
idea that the l'angt'nage would not be in BASIC; that one's too simple.
The notion of programming really did not hit me until I actually got
into class on the first day. To tell you the truth, I didn't know what to
expect from this class; Itook it because it's the first course any
Computer Science major must take, and I took the honors because I
felt it would be very beneficial to have an honors class that was in my
major. As to the contents of the class, I had no idea what was to be
expected, nor did I really care, since I had to take it anyway. All I
knew was that I would find out more about the class when I got there.

When I first got into class and realized it would be programming
in Pascal, I thought, "That's cool." But, when you started mentioning
the WEB program/file and weaving and tangling, I began to think,
"Am I in the wrong class? This sounds like basket weaving. What
does basket weaving have to do with computers?” Iam not kidding
you; I really thought that. The first day I came to fully understand
what you were talking about when you said "Tangle" and "Weave"
was the day when you gave us the diagram of the WEB world, in
which the WEB file goes down the two paths via Tangle and Weave.

When we actually started working with Emacs and our WEB
files, I was a little leery about it because of all the strange, new

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

258

commands. Ididn't let it get to me because I'm the type of person that
just goes with the flow. When we got a chance to see the final output
of the DVIng, I was amazed and awed that the computer could do that.
I thought it was really interesting; yet, I still had a few little doubts
here and there about a variety of items. At the time, however, I was
still trying to get settled down into college life, so I didn't worry over it
too much.

Now that we have done several labs using Emacs and WEB, 1
have a better feeling about it. Ilike it. WEB aliows me to write down
my thoughts at the same time and place where my code is written. It's
very helpful in keeping your thoughts straight in your head. It allows
you and others to know what you did at a specific point in the program
and why you did it that way. Also, breaking up the code into different
sections makes it a lot easier to write code, for two reasons. The first
is because this allows parts of code to be written and placed in the area
where the documentation for that code is found. The second is that by
breaking down the code into little parts it is easier to work with and
figure out the problem and the bits of code to go with that problem.
This stepwise refinement really helps in turning a monster task into
simple, easy assignment statements. WEB and all its attributes are
very useful to programmers and very beneficial to everyone involved
with the program.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

259

CPSC 110

My initial expectations for the Computer Science 110 honors class were nunierous.
My primary expectation of the class was the size. For fourteen years [attended a small
private school where the classes never exceeded 20 and by ensolling in the CPSC 110
honors | hoped that the size would be similar to that of my high school. I felt that this was
not an unrcasonable cxpectation because the way in which A & M presenta the honors
program it can only be deduced that the size of any honors course would be significantly
smaller than the regular equivalent.

My second expectation of CPSC 110 honors was that it would be taught by
someon¢ who was not only interested in the ficld but also energetic about the class. This
expectation was also reasonable in my mind simply because, that is what the honors
program is all about, teachers and students who carc. This brings me to the third
expectation and only expectation that has not been adequatcly fulfilled. 1 had hoped that
the class would be madc up of students who were not taking the course just ta fulfill their
honors requirements but sather students who had the desire to leamn everything that they
could, Students who came 8o class becausc they wanied to be there, and students who
respect those around them and the teacher. Needless to say, that is not the case.

My final expectation of CPSC 110 honors was that it would solidify nry, base in
problem aolving and reinforce my knowledge of Paschal. The coursc has thus far done an
autstanding job of both solidifying my basc and reinforcing my knowledge of Paschal.

My initial reaction to the web atyle of programming was onc of complcic
confusion. We were thrown into the 1ab and Iefi to understand the concept by triai and
error. Not 10 say that there was absolutcly no instruction about the nature and purpose of a
WESB file, but, for mysclf, somcone who has previously programmed in paschal, there was
not cnough cxplanation as to the advantage, the proper implementation, or the integration

Re . . .
produced with permission of the copyright owner. Further reproduction prohibited without permission

260

of code into a WEB file. The first lab was intenscly annoying. We had no idea what was
happening, what we were typing in, and most imponan;ty, why we got all the errors and
how were we going to correct them. The errors in the TEX were the most frustrating
because we had absolutely no idea what the TgX commands were doing and no way of
finding out if we were working in the lab at night or some other time that help was not
available.

However, I have been converted. I now belicve that the WEB style of
programming is much better than that of any other I have thus far encountercd. The
reason for this one hundred and eighty degree turn around was that when I atiempted to go
back and cdit a program that I had previously written in my high school career it took me
several hours to even determine the generai arcas that I needed to concentrate on. The
program was an address book that used arrays, records, color, windows, and cverything
¢lse that is now nothing more than code with no rhiyme or reason as to why. I can now not
only see the advantage to the WEB style of programming but I can appreciate it.

However much I appreciate the WEB style of programming it is still to this day
very frustrating at times. The only thing that I could think of to alleviate the confusion
would be to teach more of what the TEX is all about and the commands. But perhaps the
best way to lcamn is trial by fire.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

261

Reactions to Class

. What did you expect from this class aid why? 1 didn't
really know what to expect. I had heard that it was just
basically PASCAL. so I expected a more in-depth version of the
computer science class that I took in high school. | assumed
that the Turbo editing eavironment would be used, simply
because ! didn't know sabout any more sophisticated or
pragmatic editors. Since the course is honors, | guessed that the
class size would be smaller and the assignments would involve
more thought than the regular sections' problems.

2. What was your reaction/acceptance/whatever to WEB
programming? (in the first couple of weeks of class) Why?
I found EMACS to be a cryptic, butky editor and WEB to be a
stow. inefficient way of programming. 1 found myself spending
the same amount of time planning the program and developing
pseudocode, and taking longer to type the program into the
machine. Though | recognized then the value of WEB
programming for maintenance and readability, it annoyed me.

3. What are your current reactions/acceptances/feelings/etc.
to WEB? Why? | recognize the importance of WEB, but I still
do not like it. 1 am glad that | em learning it, but | wish it was
never invented. 1 would probably feel better about WEB if |
had not already learned to program; it would be more successful
with first time programmers. Since I already think in terms of
"what should happen next in this program” the quality of WEB
that allows the program to be assembled from bits scattered
throughout the document is of little use to me. 1 tried to write
like that, but | had so many compilation errors (variables

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

262

declared too many times, etc.) that | abandoncd this style. |
now wrile the comments, then write the whole program, in the
arder that | would enter it into a Turbo editor. 1 still think that
the EMACS editor is very inefficient and quite obnoxious, but
there have to be some programs for computer scientists of my
generation to improve. Another frustration | have with WEB is
that | have to program in the fab; [do not know of a way to use
my machine at home. This would be less of a problem if 1
could somehow access EMACS over my modem, but I do not
know that this is available. 1 realize that, as a C.S. major, I need
to get used to cryptic, awkward systems, but WEB
programming is still a challenge.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

263

§10 Class Evaluation QUESTION AND ANSWER SESSION 1

1. Question and Answer Session.

3. CPSC110-H

5. What did you expect from this class and why?

6. Actually, 1didn’t know what to expect from this class. Because it was the first semester of my freshman
year, I couldn’t make any reasonable assumption as to what was going to happen. The whole arena of
college life and scademics was a complete mystery Lo me. In spite of older friends talking to me about
college, something was always lost in the translation. It seemed more sensible to enter this new world
without any preconceived notions. Throw in the fact that this was an honors course, and xpeclations lose
even more of their significance. Who can eay wht twists and turns an honore course will take? Because of
all this uncertainty,] decided to not develop expectations where they would only serve to confuse the issue.

7. What was your reaction to Web programming initially and why?

8. At first I couldn’t understand why we needed to know Web programming. It seemed unimportant.
I didn't realize the significance of program documentation. I thought that as long as 1 wrote a program
code that worked, there wasn’t much else to know. Chalk it up to ignorance on my part. But we were
told it would definitely help us in the long run, and that was enough to make me follow through. In the
beginning, the ideas behind Web programming were very confusing to me. It took me a long time to realize
that it was a combination of documentation and code. Up 10 this point, I'd had extremely little experience
in documentation. The entire concept of writing down in prose form what a program was supposed to
accomplish was relalively new to ime. Because of that, I was probably a little intimidated. And again, 1
couldn’t do anything but trust in the instructors and try to understand what was going on. That's typically
what a student does to leatn anything.

8. What are your current reactions to Web now and why?

10. [see now how important Web, or any documentation programming, can be. 1 also understand the
importance of clear design tactics to facilitate maintenance. The actual code seems to be of somewhat lesser
priority. I see that the whole idea of design and documentation is developed to make code formation less of
& hassle. Of course, I’'m still at least & little intimidated by Web. It seems that the more I find out about
it, the more there is that I don't know. It gets frustrating at times, but 1’m starting to see that pattern in
everything I'm learning. So, I guess it’s just a natural progression of learning. Finally, Web programming is
definitely a ueeful tool, and I'm glad I had the opportunity to be introduced to it before going further in my
computer science career.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

264

Puanicienmion Hssionment 1
Cuirss Evaummion

1) Wi oto vou Expeer £2ou mas ewsss oo win?

I expected this class to be much more PASCAL inten--
sive, mainly due to the description of the course that was
presented during Freshman orientation. The title of the
course is 'Programming 1,’ thus leading to the conclusion
that the primary thrust of the course would be program-
ming.

2) ;’lmn was vour RErcTion N0 neceeranet 10 WER srocenusiing awo
WiN

My initial reaction was disgust. The course seemed to
be going in a different direction than I had hoped, and I
honestly did not like it. WEB style programming seemed
to be a time consuming and wasteful process that was
nothing more than programming documentation overkill.

)] i;inm ARE VOUR euRRENT rEneTIions ano ncceeTance 10 WED wow awo
oIV,

I am now comfortable with the WEB process. After
working (many hours!) with the programming style, I feel
that I can be fairly efficient with WEB. The TEX experi-
ence has its obvious advantages, and the emacs edilor ex-
perience will be useful in the future. However, the style in
which the programs are documented still has a wordy and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

265

cumbersome feel. I was taught to document a program
with remark statements in a way that is concise and de-
scriptive. The WEB style programming is a departure

from this in-program style that is still uncomfortable for
me. B

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

266

L2222 222222233222 2

1. What did you expect from this class and why? Actually, I expected computer
science to be my worst class this semester, The first day of class scared me
half to death., Since I knew nothing about Pascal or programming (and assumed
everyone else did), ! was sowewhat paranoid in general, When we started
talking about WEB and ToX, literate programming and editing environments, etc.
I began to ponder dropping the class and losing my honors credit.

2. What was your reaction/acceptance to WEB programming initially? As was
stated in the last response, my very first reaction to WEB was to run as far
away from the computer science department as possible. After the first lab, I
started feeling a little bit better because no one else 'in the class under-
stocod WEB either. One day in the middle of the second lab, something sort of
hit me and it all kind of fit together--the way wodules work and what the dif-
ferent commands do, etc. 1 understood why WEB was used to maintain programs
mainly because when I looked at a turbo written Pascal program, it just made
absolutely no sense to me. ’

3. What is your current reaction/acceptance to WEB? Now, I'm pretty much
enjoying the class. It seems easier to me to work with a WEB--the design
process work out the programming probles before you code, and the actual WEB
file helps me keep my code segments separated and organized. The only thing I
really like better about regular Pascal is declaring all the variables, con-
stants, and types together {(which is fine because it can still be done in a
WEB). I might feel differently if I had known Pascal before taking this
class, but I'm fairly comfortable with the WEB format and simple TgX and emacs
commands at the moament.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

267

I. Because it (¢ called an 'Honoaxs’' class, I expected the
process o4 teaching Tuabo Pascal to be accelearated. I atso
expected it to be about 90% Lab, because that (4 ufere you

actually leaan how 20 wrile a progaam.

2. When 1 was $ixst lntrxoduced to emacs, I éelr curious,
beccuse it was 4omething new, and also wondzoud, because I
thought we were to Leaxn Paogramming in Tuabo Pascal, and

not editing a textédle using emacs.

3. Now, 4ince ! have becowe a Little gamiliar with emacs, I
betieve., that it might be a good didea to acquaint students
L0 emacs, {§ there (4 a good ctance af them needing L{¢ as
they progaess. | bdelieve that having us edit our tuxbdo
Pascal programs and documents thaough emacd L4 dinappaopriate
éon this class, since much of oua time to actually 'u@i&c a

program’ {4 Lo4st on emacs, weave, tex, tangle etc.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

268

VITA

Deborak Lynn Byrum Dunn was born on July 31, 1961, in Washington, D. C., to
Burton and Aura Byrum. She received a B, B. A. in Business Data Processing in 1979
from Stephen F. Austin State University. Upon completing her bachelors degree, she was
employed by Mobil Oil Corporation. She received an M. S. in Computer Science at
Stephen F. Austin State University in 1989. She began work on her Ph. D. at Texas A&M
University in June of 1989. Since that time she has worked as a graduate assistant
teaching and is currently a lecturer in the Computer Science Department. She may be
reached at the Department of Computer Science, Texas A&M University, College Station,

Texas, 77843-3112.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

