
www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are :n typewriter face, while others may
be from any type of computer printer.

Hie quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margin^
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

A Bell & Howell Information Company
300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA

313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LITERATE PROGRAMMING AS A MECHANISM FOR

IMPROVING PROBLEM SOLVING SKILLS

A Dissertation

by

DEBORAH LYNN BYRUM DUNN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 1995

Major Subject: Computer Science

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

UMI Number: 9534331

OMI Microform 9534331
Copyright 1995, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LITERATE PROGRAMMING AS A MECHANISM FOR

IMPROVING PROBLEM SOLVING SKILLS

A Dissertation

by

DEBORAH LYNN BYRUM DUNN

Submitted to Texas A&M University
in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Approved as to style and content by:

/ iL M £
^ S. Bart Childs

(Co-Chair of Committee)

 d d t i .
/ f John/f. Leggett ' r

/ (Member)

Ijit'tLj ij ,̂ j) ̂ _______
Richard A. Volz

(Head of Department)

May 1995

Major Subject: Computer Science

Willi ail
(Co-Chair of Committee)

Rodger J.fHoppa
(Member)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ABSTRACT

Literate Programming as a Mechanism for

Improving Problem Solving Skills. (May 1995)

Deborah Lynn Byrum Dunn, B.B.A., Stephen F. Austin State University;

M.S., Stephen F. Austin State University

Co-Chairs of Advisory Committee: Dr. S. Bart Childs
Dr. William M. Lively

Software maintenance is becoming an increasingly important factor in determining

software costs. Researchers are investigating methodologies for improving program

development and documentation which may, in turn, reduce maintenance costs. The

result of the design phase of software development affects the quality of the code which is

written and implemented. The ability with which a programmer solves a given problem

directly affects the quality of the program developed for the solution.

An increasing amount of research is being performed in the area of problem solving

and methods by which we teach novice programmers to solve problems. Many of the

difficulties experienced by novice programmers are not a result of misunderstanding the

language constructs, but a result of problems with forming a solution to the problem. The

manner in which a novice programmer solves a problem will directly affect the program

that is produced.

Knuth coined the phrase “literate programming” to refer to programs which are meant

to be read by humans, as well as executed by a computer. His WEB programming

methodology was designed to encourage pseudocode development, stepwise refinement,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

and documentation of code, including the design rationale, prior to the actual writing of

code. The methodology should also produce programs in which the documentation is

highly correlated with the code.

This research involved the adaptation of a methodology which can be used to improve

the software development process and the evaluation of programs which are developed in

introductory computer science courses. The methodology combines literate programming

with the concepts of problem solving to capture, document, and emphasize the problem

solving process. The production of well-designed, readable, maintainable software for the

solution of problems is the goal.

The methodology was tested and the results compared with previous introductory

computer science classes. A group of novice programmers with limited program m ing

experience utilized the methodology successfully in the development of problem solutions.

The design solutions were then successfully used in the implementation of the

accompanying programs. Since the implementation of the methodology was successful for

the study, we feel the adaptation of the methodology is viable and should be tested in

successive classes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

V

To my husband Henry and my parents Burton and Aura. Their constant love and support

allowed me to complete this work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ACKNOWLEDGMENTS

I want to thank Dr. Bart Childs for providing me the guidance to accomplish this

research. His patience and encouragement gave me the strength to complete this work. I

feel privileged to call him a friend and mentor. I also want to thank Dr. William Lively for

providing me the guidance and support to complete this research. I will never forget these

two men.

I also sincerely thank the members of my committee, Dr. John Leggett and Dr. Rodger

Koppa. Both members have provided guidance and encouraged me and I am proud to

have worked with such fine researchers. A special thanks goes to Dr. Stephen Smith as

Graduate Council Representative for providing support and encouragement.

Others deserving a very special note of gratitude are Peter Nuernberg for assisting

with the test study and providing feedback on my ideas; Marie Legare for keeping me

sane; Michael Vidlak for his constant friendship and support; Hiroko Fujihara for always

being there; my father for never letting me lose sight of my goal; and especially my mother

for always encouraging me and never letting me forget to laugh.

Finally, I thank my husband Henry for his love, support, encouragement and, most of

all, his patience.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TABLE OF CONTENTS

Page

A B S T R A C T .. iii

D ED ICA TIO N .. v

ACKNOW LEDGM ENTS.. vi

TABLE OF C O N T E N T S .. vii

LIST OF TA BLES.. x

LIST OF F IG U R E S ... xii

CHAPTER

I INTRODUCTION.. 1

I.A Background .. 1

I.B Research Objectives... 3

I.C O verview .. 3

II LITERATURE SURVEY... 4

II.A The Software Development P ro c e s s ... 4

II.B Problem Solving... 6

II.C Literate Programming.. 13

II.D Software Engineering Concepts.. 19

II.E Using Literate Programming to Teach Good Programming Practices 21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TABLE OF CONTENTS (CONTINUED)

CHAPTER Page

II.F Using Literate Programming to Improve Problem Solving Skills . . 22

III DESIGN OF A TEST STUDY... 23

III. A Selection of Participants ... 23

III.B Teaching Introductory S tu d e n ts ... 29

III.C Literate Programming and the Design of Solutions............................ 30

III.D D e s ig n .. 51

III.E P a r tic ip a n ts ... 52

III.F Methods of M easurement... 52

IV IMPLEMENTATION OF A TEST STUDY .. 57

IV.A Test S tu d y .. 58

IV.B Teaching Assistant.. 61

V R E S U L T S... 62

V.A Background/Experience of Test Study P a r tic ip a n ts 62

V.B CS/1 Class Information.. 66

V.C Student Classification Distribution.. 67

V.D Problem Solving Performance .. 68

V.E Programming Perform ance.. 71

V.F Exam P erfo rm ance.. 75

V.G Course Performance.. 78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TABLE OF CONTENTS (CONTINUED)

CHAPTER Page

V.H CPSC 120 Perform ance.. 82

V.I CPSC 210 Performance.. 85

V.J Student Evaluation of CPSC 110 Teaching Methodology 90

VI SUMMARY, CONCLUSION, AND FUTURE WORK 93

VI.A Sum m ary... 93

VLB Conclusion.. 95

VI.C Extensions and Future R esearch... 96

REFERENCES... 98

APPENDIX

A COURSE MATERIALS .. 103

B OVERALL COURSE STATISTICS.. 189

C INDIVIDUAL COURSE STA TISTIC S... 192

D INDIVIDUAL PROBLEM SOLVING TEST STATISTICS........................ 215

E SUMMARY CS/2 COURSE STA TISTICS... 217

F STUDENT REACTIONS TO WEB... 222

V I T A .. 268

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

X

LIST O F TABLES

TABLE Page

1 Unusual or Exceptional Computer Experience of Subjects.......................... 63

2 High School Computer Experience of S u b je c ts .. 63

3 Problem Solving Is s u e s ... 65

4 Initial Problem Solving A bility .. 66

5 Student Distribution by Classification (P e rc e n t) ... 68

6 Student Distribution by Major (P e rc e n t) .. 68

7 Mean Problem Solving Scores - Labs (Percent) ... 69

8 Standard Deviation of Problem Solving Scores - Labs (P e rc e n t) 69

9 Mean Problem Solving Scores - Tests (P e rc e n t) ... 70

10 Standard Deviation of Problem Solving Scores - Tests (P ercen t) 70

11 Mean Program Scores.. 74

12 Standard Deviation of Program S c o re s ... 74

13 Mean Exam S c o res ... 77

14 Standard Deviation of Exam S co res ... 77

15 Overall Grade Distribution (P e rc e n t) .. 79

16 Grade Distribution for CPSC/CSEN Majors (P e rc e n t) 79

17 Grade Distribution for Other Majors (Percent)... 80

18 Overall CS/2 Grade pistribution (P ercen t)... 82

19 Average Grade for CS/1 and CS/2 Courses... 84

20 Average Difference in Grade for CS/2 C la s s e s .. 84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LIST OF TABLES (CONTINUED)

TABLE Page

21 Overall D ata Structures Grade Distribution (P ercen t)................................. 86

22 Average Grade for CS/1, CS/2, and Data Structures Courses.................... 88

23 Evaluation of Fall 1993 CPSC 110H Students’ R e a c tio n s 91

24 Standard Deviation of Rating S c a le ... 91

25 Student Distribution by Classification (A ctual)... 189

26 Student Distribution by Major (A ctual)... 189

27 Overall Grade Distribution (A ctual)... 190

28 Grade Distribution for CPSC/CSEN Majors (A c tu a l) 190

29 Grade Distribution for Other Majors (A c tu a l) ... 190

30 Overall CS/2 Grade Distribution (A c tu a l) ... 191

31 Overall Data Structures Grade Distribution (A c tu a l) 191

32 Problem Solving Statistics (A c tu a l) ... 216

33 CS/2 Course Statistics - 1991 ... 218

34 CS/2 Course Statistics - 1992 ... 219

35 CS/2 Course Statistics - 1993 ... 220

36 CS/2 Course Statistics - 1994 ... 221

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LIST OF FIGURES

FIGURE Page

1 Contents of a Case S tu d y .. 9

2 Contents of an Expert’s T e m p la te ... 10

3 Knowledge Not Possessed by Novice Program m ers... 11

4 Program Audience... 12

5 The WEB P ro cess ... 16

6 Defining a P ro b le m ... 20

7 Design Example - Table of Contents.. 33

8 Design Example - Problem S tatem ent... 34

9 Design Example - Inputs Required... 35

10 Design Example - Outputs Required.. 36

11 Design Example - Processing R e q u ire d .. 37

12 Design Example - Algorithm D evelopm ent... 38

13 Design Example - Testing.. 39

14 Design Example - Index... 40

15 Program Example - Table of Contents... 41

16 Program Example - Problem Statem ent.. 42

17 Program Example - Inputs Required ... 43

18 Program Example - Outputs Required .. 44

19 Program Example - Processing Required ... 45

20 Program Example - Algorithm Developm ent... 46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LIST OF FIGURES (CONTINUED)

FIGURE Page

21 Program Example - The Actual P rogram ... 47

22 Program Example - Testing .. 48

23 Program Example - Index ... 49

24 Program Example - List of Sections.. 50

25 CS/1 Course Grade D istribution.. 81

26 CS/2 Course Grade D istribution.. 83

27 Data Structures Course Grade D istribution... 87

28 Grade Progression... 89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1

CHAPTER I

INTRODUCTION

I.A Background

The software crisis has been described as the inability to develop reliable, maintainable

software in a timely, economical manner [3, 4, 6, 22, 26]. It is the focus of much attention

and concern by software engineers. A method by which we can reduce the cost of

developing software has been a goal for researchers in software engineering.

One of the predominant goals in developing software is to reduce both development

and maintenance costs. Software maintenance is a factor in determining software costs as

additional software is being developed. Typically, maintenance costs are approximately

seventy percent of the total software life-cycle costs [22]. The development cycle of a

software product may span one or two years, while the maintenance cycle can span five to

ten years [22]. Therefore, ease of maintenance is an important consideration in software

development.

Researchers are investigating methodologies for improving program development and

documentation which may, in turn, reduce maintenance costs. Soloway, et. al. [49, 68, 69]

explored the “design of software documentation for maintenance” in order for the

maintainer of a program to be better able to understand the design rationale. The goal of

literate programming, a concept introduced by Donald Knuth [28], is “instead of imagining

that our task is to instruct a computer what to do, let us concentrate rather on explaining

This dissertation was prepared in the format of Communications o f the ACM.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2

to human beings what we want a computer to do.” He stated “documentation is at least

as important as programming” [28].

Researchers have found that many of the difficulties experienced by novice

programmers are not a result of misunderstanding the language constructs, but a result of

problems with “putting the pieces together” [69]. Thus, the process by which programs

(and documentation) are developed should be examined.

An examination of the methods by which students are taught to program has led to

the conclusion that there is a failure to provide explicit instructions in the area of problem

solving [38]. Introductory computer science classes emphasize language features and

general programming practices, although course syllabi often emphasize problem solving

techniques.

Soloway states the major stumbling block is not the syntax of a language, but the

composition and construction of a program. He also suggests the way to overcome the

problem is to shift the method in which our introductory computer science students are

taught. He uses the concept of goals and plans to emphasize design rather than syntax [64].

The focal point of this research is the adaptation of a methodology which can be used

to improve the software development process and the evaluation of the programs which

are being developed. The methodology combines literate programming with the concepts

of problem solving to capture, document, and emphasize the problem solving process. The

production of well-designed, readable, maintainable software for the solution of problems

is the goal.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3

I.B Research Objectives

The objectives of this research are to determine the effects of:

1. emphasizing software engineering concepts of problem specification and design;

2. including the design rationale and expected test results in the program as
documentation;

3. developing more readable, understandable software as a result of the iterative problem
solving process utilizing the framework of literate programming;

4. using the literate programming paradigm in emphasizing problem solving by iteration,
review, and feedback; and

5. peer review as part of the design and development process.

This dissertation is the result of the development of a problem solving methodology

which may improve the manner in which software is designed and developed.

I.C Overview

A survey of the literature in the areas of problem solving and literate programming is

in Chapter II, including:

• the research that has been performed in the area of learning to program;

• problem solving and where it fits into the program development cycle; and

• Knuth’s WEB system and the concept of web programming.

The design of a test study to determine the effects of literate programming on problem

solving is presented in Chapter III.

A discussion on the implementation of the test study is in Chapter IV.

A description of the comparison groups for the test study and the results of the test

study are presented in Chapter V.

Finally, a summary and the conclusion for the experiment may be found in Chapter

VI. Extensions to the test study and possible future studies are presented.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4

CHAPTER II

LITERATURE SURVEY

The first three steps in the software development process are requirements,

specification and design [19]. The result of the design phase affects the quality of the code

which is written and implemented. Therefore, the ability with which a programmer solves

the given problem directly affects the quality of the program developed for the solution.

Extensive research has been performed in the area of learning to

program [12, 23, 25,34, 35, 37,38, 58, 64, 69]. A competent programmer requires a

knowledge of programming language syntax and constructs, as well as good problem

solving skills [35].

The literate programming methodology was introduced by Knuth upon his second

writing of T£X [28, 29]. The methodology encourages:

• correlation of internal code and documentation;

• pseudocode development;

• stepwise refinement; and

• the documentation of code, including the design rationale, prior to the writing of code.

This documentation of the design rationale has become an important factor in the

development and maintenance of software [13, 14, 15, 33, 41].

II.A The Software Development Process

Software engineers have a goal of reducing software costs and increasing

productivity [4, 6]. In 1976, Boehm [3] predicted that software costs would escalate to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5

over 80% of the total cost of a system (hardware and software). His prediction included

the statement that the portion of the effort spent on software maintenance was (and

would continue to be) greater than that spent on software development.

One of the techniques used for developing software is to adhere to a specific life-cycle

model. There are a variety of software life-cycle models from which to

choose [3, 5, 22, 24, 26, 60]. The purpose of a model is to provide some type of guidance

on the order in which major tasks should be carried out in the development and

maintenance of software. Fairley'[22] states that “different models emphasize different

aspects of the life cycle, and no single life-cycle model is appropriate for all software

products.” Regardless of the model name, all life-cycle models consist of some form of

problem definition, analysis, and design.

The first step in software development (or maintenance, for that matter) is to clearly

define the problem. Although this seems like an obvious and simple task, it sometimes

takes a great deal of time and many iterations. It is important that the users of the

system be involved during this phase, as well as subsequent phases.

The purpose of the analysis phase of software development is to determine the

requirements of the proposed system [26]. The output from this phase is a problem

specification which can then be used in the design of the system. A variety of tools and

techniques, such as data dictionaries, data flow diagrams, and flowcharts, may be

produced [22, 26, 60].

The design phase of the life-cycle model utilizes the outputs from the previous phases

to create a system which fulfills the users’ requirements [19, 22, 26, 60]. These preliminary

phases (in all of the models) greatly affect the quality of the software that is developed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6

And, the quality of the design greatly affects the amount of maintenance that may be

performed on the system.

Boehm [22] estimates that 40% of the effort in the software life cycle is spent on

development, while the remaining 60% is spent on maintenance. Of that 40%, only 8% is

spent on implementation. The remaining 32% is spent equally on analysis/design and

testing. It can be seen that a significant amount of time is spent on determining how the

problem will be solved and testing the solution. In order to improve the quality of our

software, we need to improve the methods by which we solve problems and develop

comprehensive tests for our solutions.

II.B Problem Solving

A computer system is simply a problem solving tool [31]. We should concern ourselves

with teaching students good approaches to using this tool; that is, better approaches to

problem solving. The first step in problem solving is actually understanding the problem.

Few of the problems presented in introductory textbooks are extensive [35]. Therefore, it

is relatively simple to define the problem. It could be said that a precise understanding of

the problem definition is itself a solution to the problem.

There are a variety of approaches to problem solving and programming. W irth believes

programming can be introduced “as the art o t technique of constructing and formulating

algorithms in a systematic manner, recognizing tha t it is a discipline in its own right” [79].

Introductory programming textbooks normally discuss some kind of approach to software

development, whether it be structure charts, top-down design, divide-and-conquer, and/or

pseudocode [30, 46, 57]. The students may be taught to verbalize the problem. One way

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

7

this may be accomplished is by peer review and feedback. Students may also be taught to

visualize the problem. This may be accomplished with the use of pseudocode or

English-like expressions. Flowcharts, hierarchical diagrams, structure charts, and sketches

are used to give a better understanding of the problem [30, 46, 57]. Textbooks typically

emphasize the top-down design techniques of breaking a problem down into parts [35].

Linn and Clancy [35] state that a good programmer needs both a knowledge of the

programming language and good problem solving skills. Introductory courses tend to

emphasize programming; that is, the product of good design and development [35].

Although this is obviously an important aspect of programming, the real problems exist in

the design of problem solutions [38]. Few textbooks used in the introductory courses

actually emphasize teaching the student how to develop good design solutions [35],

regardless of the university catalog description.

Soloway [64] states that goals and plans are the two key components in the task of

representing problems and solutions to a problem. Problem solving, and hence learning to

program, requires that students learn to construct mechanisms and explanations for those

mechanisms. Students are led to believe that programs are the output from the

programming process. Rather, they must be made to understand that programming is a

design discipline. Instead of the programming process being viewed as a program, it

should be viewed as “an artifact that performs some desired function” [64].

Many disciplines at the university level are beginning to require their students take at

least one computer science coprse. As a result, a large number of students enroll in the

introductory computer science courses. There is some controversy as to whether or not all

students should be taught to program [65], The reason for the controversy stems from the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

8

difficulty with which novice programmers learn to program. It is for this reason there is a

growing amount of research in the field of learning to program.

II.B .l Solving Problems by Example

Several studies have been performed in the area of learning by example. Pirolli and

Anderson [50] found that examples can play an important part for students learning

recursion. Reder, Charney, and Morgan [54] found that the most effective manuals for

teaching students how to use a personal computer were those containing examples. The

work of Chi, et. al. [12] focuses on the theory that differences in students’ ability to solve

problems may stem from the differences in the way they understand examples. They

found that students learn well from example, provided they explain the examples to

themselves while they are learning.

As a result of some of this research, a software tool called EXPLAINER has been

developed [55]. The purpose of EXPLAINER is to help programmers solve problems by

exploring previously worked-out examples. The software tool combines examples of code

with knowledge about how the examples were solved.

Some related work has been performed in the area of determining the mental

representations of programs that are formed by programmers [23]. Two sets of

programmers, novice and expert, were asked to study a program and later recall certain

information about the program. The results of the experiment showed that experts scored

significantly higher than novice programmers. The study tends to support the fact that

the experts have developed skills which help them develop better mental representations.

This difference in mental representations may be attributed to the difference in

programming knowledge and in program comprehension strategy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

9

II.B .2 Solving P rob lem s W ith th e U se o f Case S tudies and T em plates

Linn, Sloane, and Clancy [38] found, in teaching program design, that teachers who

discuss how they solve problems, including their interpretation of the problem statement,

are more effective than those who present just the subject matter. Studies have shown

that explicit teaching of problem solving strategies greatly influences learning [37, 38].

Linn and Clancy have performed significant research in using programming case

studies or templates [34, 35, 36, 38]. Figure 1 is a summary of the information contained

in a case study [35].

______________________________A Case S tudy______________________________
0 A programming problem statement.
0 A narrative description of the process by which an expert solved the problem,

written so a novice can understand the approach.
0 The expert’s source code.
0 Study questions for practice in program design, analysis, and problem solving.
0 Test questions designed to assess the students’ understanding of the solution.

Figure 1. Contents of a Case Study

Expert programmers hold certain templates that may be communicated to novice

programmers. The contents of these templates is summarized in Figure 2 [35].

Novice programmers often organize their knowledge in terms of syntax, rather than in

terms of a conceptual algorithm. This may be a result of how the students are taught [35].

A case study can be used as a method to provide explicit instructions on how to combine

the template knowledge with program design skills to solve a problem. The students must

then practice generalizing their new skill to new problems. If too much emphasis is placed

on explicit strategies, students will not learn problem solving skills [25].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

10

_______________________ An Expert’s Template________________________
Q A general representation of the action of a component, in pseudocode form.
0 Sample programs which use the component.
0 A pictorial representation of the action of the component.
0 Verbal descriptions that facilitate communication about the component.
0 Implementation steps for incremental development of the component.
Q Testing information, including possible difficulties that should be covered in the

tests.
0 Debugging information which includes possible bugs, their symptoms, and ways

to anticipate them.
0 Connections of the component to related components, to subtemplates, and to

supertemplates.__

Figure 2. Contents of an Expert’s Template

The idea of templates has been extended to include on-line template libraries and case

studies [58]. A study was devised in which three groups of subjects (novice, intermediate,

and expert) were given access to an on-line template library. The template library

contains a variety of templates of algorithms that are typically taught in the introductory

programming courses. The subjects were then observed in order to ascertain how they

organized, learned and applied the various templates [58].

As expected, the experts organized their templates in a more abstract manner than

novice programmers. The case studies helped the novice programmers reuse templates

and all subjects found that the code and pseudocode representations helped them write

the code to solve new problems.

II.B.3 Solving Problems With the Goals and Plans

Soloway and colleagues [67, 69] have studied bugs - errors in programs - and

misconceptions - misunderstanding in the minds of novice programmers - in an attempt

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

11

to identify the needs of novice programmers by understanding the kinds of mistakes they

are likely to make. Because there are many ways to solve a given problem, bugs are

identified using a goal/plan analysis. Goals are what is to be accomplished and plans are

those stereotypical sections of code that are used to achieve the goal. Thus, bugs are the

differences between the correct plans and the incorrect implementations used by

novices [69].

Two observations were made based on the goal/plan analysis of novice

programmers [69]:

1. some bugs occur repeatedly in novices’ programs, while others rarely occur; and

2. most bugs occur because students do not fully understand the semantics of certain
programming language constructs.

Spohrer and Soloway also determined that novices have difficulty composing plans [69].

Soloway and Ehrlich [66] believe expert programmers harbor at least two types of

knowledge not possessed by novice programmers. These types of knowledge are shown in

Figure 3.

Expert Knowledge
0 Programming plans, which are code fragments that represent typical action

sequences in programs.
0 Rules of programming discourse, which are rules that specify programming

 conventions.__

Figure 3. Knowledge Not Possessed by Novice Programmers

Programs are created by using programming plans which are modified to fit the needs of

the specific problem. The rules of programming discourse are used to govern the

composition of the plans [66]. This lack of knowledge regarding plans and the rules of

programming discourse is the reason for the difficulty experienced by novice programmers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12

Soloway’s research [64, 69] suggests that it is not the language constructs which prove

difficult for novices, but actually composing the program. Experts possess knowledge of

language syntax, semantics, and strategies for coordinating and composing the

components of a program.

Soloway believes a program has two audiences [64], as shown in Figure 4.

The Audiences for a Program
Q The computer, which, based on instructions is a mechanism for how a problem is

solved.
0 The human reader, who needs an explanation for why the program solves the

problem.

Figure 4. Program Audience

Therefore, Soloway believes that “learning to program amounts to learning how to

construct mechanisms and how to construct explanations” [64].

Soloway’s proposed curriculum has two underlying assumptions [64]:

1. Tacit Knowledge. Although experts are not necessarily conscious of the strategies
they employ to solve a given problem, scientists must “make explicit that which was
implicit.” We (as scientists) must tease out the tacit knowledge.

2. Whorfian Hypothesis. Benjamin Whorf suggested that “language determines
thought” ; that is, a person can only think of something if they have a word for it.
We can use a weaker claim that “language aids thought” to say that students cannot
learn what is necessary unless it is explicitly taught to them.

Goals and plans, therefore, are key components in solving problems [64, 69]. Goals are

the requirements for a problem and plans are those “canned” solutions for solving the

problems. In teaching problem solving and programming, a key objective must be to teach

methods of abstraction such that every problem does not appear to be new. Novices

should be taught that every new problem can be viewed in terms of old problems [64].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

13

Students must also be taught that programming has something in common with other

problem solving tasks [64]. Programming should be thought of as a “design discipline”

with the output being an artifact or mechanism that, "when set in motion, produces some

desired effect” [64]. Programmers must provide some trail as to how and why an artifact

was designed a particular way. This trail of information, or explanation, can then be used

by the next programmer who is required to modify the artifact. The product of the

programming process can be viewed as mechanisms and explanations. In an introductory

course, the students must be taught to construct these mechanisms and explanations [64].

II.C Literate Programming

Literate programming is Knuth’s solution for better documentation and readability of

programs [28]. Literate programming using the WEB system is concerned with writing

programs as “works of literature” [28]. Knuth [28] developed the WEB style of

programming for writing systems programs. However, there is some evidence that literate

programming, if used frequently, might be able to reduce the problems faced by beginning

programmers. Smith [62, 63] states once a programmer becomes familiar with the WEB

style of programming, the process of understanding and developing programs is simplified.

Literate programming facilitates problem solving by “streams of consciousness” [28] to

minimize the intimidation for beginning programmers.

Brown and Childs [8] believe the WEB style of programming has several advantages over

the traditional style of programming. The WEB system:

• encourages the organization of code based on psychological, rather than syntactic
constraints;

• makes the structure of the program more visible to the reader; and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

14

• encourages an explanatory style of writing, leading to more careful consideration as
to the details of the program.

Some of the basic references for literate programming are [8, 17, 28, 45, 52, 53, 62, 63].

Research relevant to literate programming has proceeded along the lines of tool

development and development of WEB-like systems. The majority of the work in the tool

area has dealt with constructing an environment in which WEB programs may be more

easily developed [2, 8, 45].

IX.C.l Organization of a WEB

The WEB system incorporates two languages, a formatting language and a

programming language. The two languages are combined to document a program, as well

as express an algorithm in a manner suitable for a computer [45]. Thus, in order to write

a WEB program, it is necessary to know a high-level language, a formatting language, and

the WEB rules [8]. Knuth [27, 28] selected TftX as the formatting language and Pascal as

the high-level programming language for his WEB system.

A WEB source hie is made up of program statements written in the programming

language and documentation written in the formatting language. A WEB program is made

up of groups of statements, called sections. Each section has three

parts [27, 28, 40, 45, 52, 59]:

1. Explanatory Material This part provides a description of the section. It should
include the purpose of the section, along with (possibly) the design rationale. It is
written in the document formatting language.

2. Definitions. This part contains any macro or format definitions.

3. Program Code. This part contains small pieces of the program. It is written in the
high-level programming language and is processed by a compiler. Ideally, the code
part should be no longer than about twelve lines so that it is easily comprehended [27].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

15

The three parts must be in the above order for each section, and any part may be empty.

An example of a WEB source hie may be found on pages 121-123 in Appendix A.

A WEB section begins with or ‘@U’, where U denotes a space. The denotes the

beginning of a major section or a chapter. A section ends a t the beginning of a new

section or at the end of the file.

Sections are numbered automatically, with the first being section 1. The programmer

does not have to be concerned about the section numbers. Programmers assign names to

each section and can then refer to a section by name, rather than number. The section

name should be a short description indicative of the contents of the section. Every WEB

program has one unnamed section which designates the main program.

II.C.2 Processing of a WEB

The procedure for processing a WEB is shown in Figure 5 [28]. The WEB source file is

used to produce a typeset document suitable for the human reader and a high-level

program suitable for compiling and executing by a computer [39, 45].

TANGLE takes as input the WEB source and produces as output the high-level source

code which can then be input to a compiler. TANGLE completely ignores the

documentation in each section. The source code produced by TANGLE is not meant to be

read by humans [28]. Therefore, TANGLE does not go to great pains to format the resulting

source code. An example of TANGLEd output may be found on page 124 in Appendix A.

WEAVE takes as input the WEB source and produces as output a file. The

documentation part of the code is copied directly to an output file; the definition and code

parts are pretty printed [45]. WEAVE automatically generates a table of contents, an

alphabetized cross-reference index, and an alphabetized list of section

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

16

HLL
Compiler

Program
for

Computer
Execution

Loader

TANGLE,

HEAVE

DVI
Driver

Typeset
Documentation

for
Humans

Device
Independent

File

T&
Source
Code

WEB
Source
Code

Object
Program

HLL
Source
Code

Figure 5. The WEB Process

names [27, 28, 40,45, 52, 59]. The resulting TftX file may then be processed to produce a

device independent (DVI) file which may be viewed on the screen or used as input to a

printer driver for hardcopy. An example of WEAVEd and TEXd output may be found on

pages 125-130 in Appendix A.

II.C.3 Documentation

The literate programming paradigm encourages more than just documentation, it is

designed for “explaining to human beings what we want a computer to do” [28]. It has

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

17

been said that real world programs are not developed to be read, but rather to be

executed [1]. However, real world programs are modified. The documentation which is

produced using literate programming should benefit the programmer developing the

software, as well as the programmer maintaining the software. Some believe the critical

characteristic of a WEB program is that the exposition is independent of the code [32]. This

allows the explanations to be directed toward the human reader [32]. It is also a general

belief that the WEB style of programming makes debugging easier, primarily due to the

expository residing with the code [70, 71, 77].

II.C.4 Software Maintenance

As some have discovered, one of the benefits of using literate programming is the

ability to associate a given design step with its code [76]. Williams states a literate

program is more than just a typeset document. It allows the programmer to produce

higher quality programs by “unfolding program code in English" [78]. This “in your

face” (sic) presentation of documentation [43] can simplify the maintenance process when

design rationale and implementation decisions are presented with the code.

The reason for improved maintenance with the use of literate programming is due to

the fact the documentation is presented with the code. It has also been reported that the

code produced using WEB is more readable [80]. Those familiar with program maintenance

state that experience has shown “even mediocre literate code is easier to modify than

good non-literate code” [80]. The benefits realized in the maintenance of literate programs

is more than likely attributable to the quality of the design documentation, which is an

integral part of the WEB style of programming.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

18

II.C.5 Expressed Concerns

There are those who have other concerns regarding literate programming. Some are

concerned with the documentation created during the development of a program.

Mehringer [43] says “I’m a software developer - not a typesetter.” While the use of T^X

provides the ability to typeset mathematics, a minimum amount of T ĵX knowledge is

actually required to produce a readable, professional-looking document. The primary

hindrance seems to be that programmers are not necessarily authors. Ramsey [51] says his

findings indicate it is “difficult to teach people to write.”

Both of these quotes offer proof that programmers tend to view themselves as people

who work with computers, rather than people who produce information that is used by

other people. Programmers should view themselves as authors of documentation. They

must realize that a documented program is not for personal benefit; rather, it should be a

well-written document (free of grammar and spelling errors) that is produced for the

benefit of others.

II.C.6 A Literate Programming Environment

Both Knuth [28] and Thimbleby [73] envisioned an interactive programming

environment for NEB; however, neither made steps toward the implementation of such an

environment. The Literate Programming Tool (LPT) created by Brown [7, 8] was a step

in that direction; however, it is a display-only viewer which shows the control flow of a WEB

and provides no interactive editing capabilities.

A prototype environment, web-mode, developed by Motl [45], provides a facility which

can support the goal/plan analysis type of development suggested by Soloway [64, 66, 69].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

19

Motl’s environment provides interactive editing capabilities utilizing the aids provided by

WEAVE. The user can view the table of contents, the cross-reference index, and the list of

section names. The user may select a section name or an index entry and traverse the

list(s) associated with the entry [45].

A Literate Programming Environment could easily support development of programs

in the format of goals being expanded into plans. The veb-mode environment is sensitive

to the creation and use of section names. When a section name is created, it is added to

the list of existing section names: A “stub” is placed in the WEB file to remind the

programmer that the section has been referenced and, therefore, must be expanded, or

written. In essence, it creates the section in order for the programmer to not receive a

compiler error if the section has not yet been written. This allows for incremental

development and testing. It also serves as a reminder to the programmer that the section

must still be developed.

II .D Softw are E ngineering C oncepts

Fairley [22] states that “the primary goals of software engineering are to improve the

quality of software products and to increase the productivity and job satisfaction of

software engineers.” There seems to be little emphasis on these goals in the introductory

computer science classes. It appears that the majority of the emphasis is on programming.

Most computer science students eventually take a course which teaches software design

principles and problem solving skills. Typically, this course is taken during the junior or

senior year. The course description of the senior software engineering course a t Texas

A&M University (CPSC 431) is [72]:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

20

Application of engineering approach to computer software design and

development; life cycle models, software requirements and specification;

conceptual model design; detailed design; validation and verification; design

quality assurance; software design/development environments and project

management.

One of the major pitfalls, then, is that our students are not exposed to problem

solving disciplines until they reach the software engineering class. As a result, students are

writing programs before they learn to solve problems.

The steps for defining a problem are shown in Figure 6 (taken from [22]).

Problem Definition
<) Develop a definitive statement of the problem to be solved. Include a description

of the present situation, problem constraints, and a statement of the goals to be
achieved.

Q Justify a computerized solution strategy for the problem.
^ Identify the functions to be provided by, and the constraints on, the hardware

subsystem, the software subsystem, and the people subsystem.
<C> Determine system-level goals and requirements for the development process and

the work products.
0 Establish high-level acceptance criteria for the system._______________________

Figure 6. Defining a Problem

It is Pierce’s belief that we 6hould focus on preparing students to enter industry with

“the theme of process improvement for quality and productivity” [48]. To this end, he

“subscribed to the conventional wisdom” that the students produce a system from scratch

in the software engineering course in order to experience all of the phases in the life-cycle.

However, he was finding that few students succeeded in anything but a high-level design,

and those systems that were implemented were poorly designed, documented, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

21

tested [48].

A major reason for the lack of success seems to be that the students, even a t this level,

focus on completing the project, rather than defining the problem. In an attempt to make

the course (and the students) more successful, Pierce implemented a maintenance-based

project [48]. In addition to having the potential for completion, it probably better

prepares the students for the “real-world” of maintenance. Those projects that are not

completed are carried over into the next semester of students.

There has been some attempt to introduce software engineering techniques at the

introductory levels in the curriculum [21, 56, 75]. The Rochester Institute of Technology

introduces students to the foundations of software engineering during the second year [21].

Others have used laboratories in the introductory course in an attempt to focus on

problem decomposition, data abstraction, documentation, design specification, testing,

and code review [56]. In each case, attempts are being made to expose students to

software engineering concepts earlier in their academic career.

II.E Using Literate Programming to Teach Good Programming Practices

Shum and Cook [61] incorporated the literate programming paradigm into the

teaching of a junior-level course. Their goal was to encourage students to write

informative and usable documentation in order to facilitate program maintenance. They

used literate programming to emphasize good documentation practices; that is, writing

programs to be read by humans.

Introductory computer science instructors, too, are interested in good programming

(and documentation) practices. However, an emphasis on problem solving should be the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

22

first step. Good programming practices will naturally follow.

II.F Using Literate Programming to Improve Problem Solving Skills

Knuth envisioned literate programming as a tool for systems programmers to develop

well-documented, maintainable programs [28]. Literate programming can also be used as a

tool for novice programmers to begin to develop good problem solving skills.

As shown in Figure 4, Soloway believes a program has two audiences: the computer

and the human reader. Knuth would (probably) concur. Literate programs are designed,

not only to solve a problem using the computer, but for the human to understand the

thought process behind the design solution.

Figure 1 and Figure 2 contain discussions of techniques that have been used to

improve the programming skills of novice programmers. The literate programming

methodology can be used to capture and represent the information contained in case

studies and templates.

The use of literate programming encourages the programmer to solve a problem using

the goal/plan analysis techniques presented by Soloway. The use of literate programming

provides novice programmers the opportunity to develop the expert knowledge, described

in Figure 3, that is typically not available to them.

One of the primary functions of literate programming, however, is to capture a

programmer's thoughts about the problem solution. A major task in software engineering

is to define the problem. Figure.6 contains a list of the steps involved in problem

definition. The literate programming development methodology can be used to explicitly

address each of the issues involved in planning a software project.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

23

CHAPTER III

DESIGN OF A TEST STUDY

A program, development methodology was proposed for use in introductory computer

science course(s) to determine the effects of literate programming on program design and

development by novice programmers. The goal of the use of this methodology is to

develop and enhance problem solving and (therefore) program design skills for beginning

programmers. Results were expected to show that use of the methodology will develop

problem solving skills along with the usual programming skills. The methodology included

developing measures which were used to assess the success of the methodology.

Knuth’s style of literate programming was used as a framework to assist students with

program design and development. Literate programming makes use of sections which

include code and documentation. Sections should be small, simple thoughts, similar to

paragraphs in literary works. These sections are linked through a system of structured

pseudo-code.

Literate programming gives the programmer the ability to piece together the design

(and corresponding code) in the manner in which it is conceptualized. The student is not

required to adhere strictly to the common top-down, procedure-oriented approach.

III.A Selection of Participants

Literate programming should be usable at any level in the curriculum to enhance the

problem solving skills of students involved in software development. It can be considered a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

24

structured means of doing what programmers should be doing anyway; that is,

pseudo-code, top-down and bottom-up design, and documentation.

The potential problems in teaching literate programming techniques to beginning

programmers (freshmen) and to programmers with experience (seniors or graduate

students) will be discussed in the following sections.

III.A.1 Literate Programming for Introductory StudentB

Freshmen computer science students arrive in the introductory course with little or no

computer experience. The term computer experience includes programming languages,

text editors, and software design and development techniques. The advantage of teaching

introductory students is they have not had ample opportunity to develop any

programming habits, poor or otherwise.

Pascal is a popular language in the introductory computer science class [75]. Teaching

literate programming to freshmen requires the that syntax of a particular programming

language be taught. In addition, the use of various language constructs must also be

introduced. These factors may contribute to the difficulty in teaching the use of literate

programming at the introductory level.

The proposed literate programming paradigm includes the utilization of web-mode for

editing WEB documents. Introductory students must learn the GNU Emacs editor and the

web-mode editing environment. The topics may at first prove to be overwhelming to a

beginning computer science student, although each topic is intended for only cursory

coverage reflected by a one-page handout.

Introductory computer science students have difficulty viewing programming as a

means by which we solve problems. Computer science instruction, at the introductory

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

25

level, tends to emphasize programming, which is the product of problem solution

design [35]. Most textbooks give examples of programs, rather than demonstrate the

method by which the given solution was derived [35].

Introductory computer science students have acquired few problem solving skills,

either through experience or from instruction. The programming problems encountered in

an introductory course are relatively simple and students see little benefit in program

design at the introductory level.

III.A.2 Literate Programming for Advanced Students

By the time a student reaches senior status, the student may be familiar with several

programming languages, including Modula-2, Ada, Pascal, C, and FORTRAN. Each of these

languages is supported by a WEB system. Thus, teaching literate programming to seniors is

not constrained to using one specific language and no time is spent teaching language

syntax. Advanced students are already familiar with language syntax and that will not

have to be taught along with the rest of the literate programming concepts.

One of the reasons for developing the literate programming style of programming is to

concentrate on “explaining to human beings what we want a computer to do” [28].

Advanced students have completed a minimum of four classes in which they write

programs. They have had ample opportunity to develop a coding style. However, seniors

are in the habit of instructing the computer what to do. They must be taught to approach

programming in a different manner.

Typical programming classes teach the student to solve problems using a top-down

approach [35]. WEB programming makes use of sections of code, along with using the more

common procedure-oriented approach. WEB sections are not subprograms, they are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

26

expanded inline. The use of WEB sections is a technique by which programmers design a

program in a “stream of consciousness” order [28]. Buyukisik [9] states literate

programming can be used as a program design language and these modules are not

procedures or functions in the traditional sense. Changing the way in which a person

writes programs, then, may be more difficult than teaching them to program with no prior

experience.

An advanced computer science student is confronted with difficult and extensive

problems. Typically, in order to solve the problem in a reasonable manner, the student

must utilize some type of problem solving technique. Thus, the problem solving

experience obtained by advanced computer science students has been acquired by practice

rather than learned through instruction.

The difficulty in changing the manner in which a person approaches a problem may

also be applied to the use of an editor. Senior computer science students have experience

using at least one editor. However, this does not necessarily mean the senior-level student

will learn emacs and web-mode faster or more easily than the freshman-level student.

Motl [45] found that although students had no difficulty in learning emacs and web-mode,

many of the features available were not utilized. This is apparently due to the tendency of

a person to use only what is required to solve the given task.

It may be possible that a novice user will tend to use more of the available features

because the novice is not constrained by any preconceived ideas of what features an editor

is supposed to provide. However, many of the files that are maintained by web-mode

would have to be examined in order to determine the possibility.

People tend to approach problem solving in a variety of ways. The fact that a senior

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

27

computer science student has some experience in this area may make it easier to teach

literate programming at an advanced level. The use of literate programming allows the

programmer to focus on higher levels of abstraction without being concerned about the

details [71]. This ability to delay the focus on lower level, or program code, details is

developed over time and after much practice. It may be difficult to dispel the belief held

by introductory students that programming is different from problem solving.

III.A.3 Discussion

It has been said the use of literate programming allows us to associate a given design

step with its consequences; that is, the resulting code [76]. Students should be taught that

problem solution design leads directly to the result, which is the program. The use of

literate programming encourages the inclusion of the design step in the source of the

resulting program. In all likelihood, the senior level student would have realized more

immediate benefit with the use of literate programming than the novice programmer.

It may appear that literate programs take longer to write than non-literate

programs [78]. One of the reasons for this may be that the documentation is being

developed with the program. Knuth stated that the total time for writing and debugging a

WEB program is no greater than that for a non-WEB program, even though the WEB program

is better and contains more documentation [28]. One other experience shows the

debugging time for literate programs is much less than for non-literate programs [71]. This

may be attributed to the fact that literate programs are better designed.

The development time required for literate programming did become a substantial

factor in teaching freshmen versus seniors. A freshman typically has not yet been forced

to develop any time management skills. The tendency of introductory students is to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

28

prolong the start of program development. The use of literate programming sometimes

caused the students to become frustrated at the time involved or caused them to overlook

the goal of literate programming and revert to merely instructing the computer what to

do. The solution to a problem is typically arrived at over a period of time. Advanced

computer science students have learned this by experience over the years and may have

realized the benefit of using literate programming techniques to document the solution to

the problem, as well as develop the code necessary to solve the problem.

One of the most important uses of literate programming is design by iteration. A

solution for overcoming the perceived difficulties in the use of literate programming seems

to be an emphasis on iteration and peer review. This technique should also be included in

the problem solving category because it is the method by which problems are solved and

solutions are derived. Design by iteration takes time, however. The solution to a problem

may be revised a number of times. The novice programmer typically does not practice

design by iteration for two reasons: lack of time and lack of experience. There is a

difference in emphasizing the use of literate programming for iterative design to senior

level students because they have experience in problem solving and have developed

time-management skills.

Knuth did not intend for literate programming to be used by novice programmers. He

designed the WEB system of programming for those “computer scientists” who were

comfortable with the use of several different languages [28]. However, literate

programming has been used successfully by computer science students [45, 61, 63], rather

than systems programmers. Novice programmers (that is, introductory students) can

utilize the literate programming paradigm in order to develop good problem solving skills.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

29

III.B Teaching Introductory Students

The ACM/IEEE-CS Joint Curriculum Task Force presented a new framework for the

discipline of computing and a new basis for computing curricula [18, 74]. The task force

addresses the role of programming in the discipline. Although it is clear that programming

must be a part of the curriculum and every computer science student should demonstrate

competence in it, “this does not, however, imply that the curriculum should be based on

programming or that the introductory courses should be programming courses” [18]. The

task force notes that programming languages are merely “tools” for the discipline.

The course description of the CS/1 course at Texas A&M University (CPSC 110)

is [72]:

“Basic concepts, nomenclature and historical perspective of computers and

computing; internal representation of data; software design principles and

practices; structured programming in a high-level language; use of terminals,

operation of editors and execution of student-written programs.”

This course description, as well as the implementation of the course, is quite likely

representative of the introductory computer science courses being taught a t many

universities today. The description does not specify that students be taught problem

solving. However, problem solving techniques may be included in the principles of

software design and are, therefore, implied. Although the students are exposed to the

topic of software design principles, in reality, the majority of the time is being spent on

programming language syntax and execution of student-written programs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

30

III.C Literate Programming and the Design of Solutions

The theme of this test is that literate programming can be used in the introductory

computer science course to emphasize problem solving. This use will result in better

designed programs, and documentation will not be ad hoc as seems to be the norm.

The students are typically instructed to produce the following information in the

design of their solution:

• problem statement;

• inputs required;

• outputs produced;

• processing required;

• algorithm; and

• testing.

Although this information is requested, it is rarely produced as an integral part of the

code. It is probably produced in handwritten form or with the use of a word processor,

but rarely with the same set of tools as the actual code. Therefore, it is rather simple to

produce a code in which the design may easily be forgotten or ignored and the reasons for

these changes are lost.

A natural use of literate programming is to create a model for the design of problem

solutions. The use of sections allows the programmer/author to outline the solution to a

problem. The programmer will define a set of goals that are to be expanded into plans

through the structured use of pseudo-code.

The initial design solution for the problem can be produced as a literate program

without any code. The design process may then be iterated several times before arriving

at a solution. Once the final design is produced, the programming task can be performed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

31

Programming the problem merely involves writing the code to implement each of the

design steps. The literate programming paradigm provides a mechanism by which the

programmer explains to the human reader his/her solution to the problem before

explaining the solution to the computer.

For example, assume the problem to be solved is the quadratic equation. Although the

problem may be a familiar one, the design process should be used to arrive at an

acceptable solution. An example of the iterations in solving this standard mathematical

problem using this methodology are available via anonymous ftp from

ftp/pub/tex-web/web/DOCs. The hies wm* are available in WEB and PostScript form. The

mathematics involved are easily represented in handwritten documentation; however, they

cannot be as easily represented using typical programming languages and accompanying

documentation. The literate programming paradigm enhances the representation of

complex (as well as not so complex) mathematical solutions. And the implementation of

the mathematical solutions require minimal knowledge of

The inclusion of graphics should also be a standard part of this approach. However, it

was not included in the CS/1 course because the students have not been exposed to an

appropriate drawing package.

The six design points (problem statement, input, output, processing, algorithm, and

testing), in conjunction with the literate program m ing paradigm, provide an outline with

which problems may be solved. The programmer may use literate programming to design

a problem solution much in the way an author designs a piece of literature. The first step

is to develop an outline and piece it together in the manner in which it is conceptualized.

The outline is expanded and refined through many iterations. Literate programming

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

32

provides the framework necessary for solving problems. The solution is outlined using

sections, which are similar to paragraphs. These paragraphs are iterated until a final

solution to the problem is reached. Suppose we have the following problem:

A rectangular house is situated on a rectangular yard. Given that the lawn may

be mowed at a rate of 2 feet per second and there exists a standard charge per

square foot, determine the cost of mowing the yard and the length of time the

job will take.

An example using literate programming to develop a solution to this problem follows.

Figures 7 through 14 contain the initial design, which is merely an outline that contains

no code. The WEB program contains sections which address each of the previously stated

design topics. Figures 15 through 24 contain the final version of the program. This final

version J the WEB program contains the documentation and the corresponding code for

solving the problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

33

Lavn Strvic*

December 2, 1994

Section Page
Problem Statement 1 1
Problem Inputs 2 2
Processing Requirements .. 3 3
Problem Outputs.. 6 4
Algorithm.. 7 5
Testing .. 8 6
INDEX .. 9 7

and an estimated time to complete the job.

Figure 7. Design Example - Table of Contents

Deborah Dunn
December 2, 1994

9:51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Lavn S a rv ic s PROBLEM STATEMENT 1

1. Problem Statement. Aggie Lawn Service is a business which provides lawn care
for the citizens of Bryan-College Station. An estimate for a potential customer is provided
which includes a cost statement and an estimated time to complete the job. The estimated is
based upon the area of the lawn and a standard (confidential) charge per square foot. Grass
can be cut at the rate of 2 square feet per second. It is assumed that a rectangular house is
situated in a rectangular yard. This estimate ignores any obstacles in the lawn, bare spots or
driveways, and does not account for breaks, slower/faster mowers, or the mower running out
of gas.

Figure 8. Design Example - Problem Statement

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

35

2 PROBLEM INPUTS L a ra S e rv ic e $2

2. Problem Inputs. In order to provide an estimate for the customer, several items must
be received. It is assumed that a rectangular house is situated on a rectangular yard. The
following must be provided to solve the problem:

e length of yard
• width of yard
• length of house
■ width of house

Figure 9. Design Example - Inputs Required

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

36

4 PROBLEM OUTPUTS Lavs S a rv ic e §6

6. Problem Outputs. The customer will be provided with the final estimate which
includes the following items:

• the cost of mowing the lawn
• the estimated time (in minutes) to mow the lawn

Figure 10. Design Example - Outputs Required

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

37

$3 Lana Ssrvics PROCESSING REQUIREMENTS 3
3. Processing Requirements. Two items must be calculated for the estimate. The cost
of mowing the lawn and the estimated time to complete the job must be calculated.

4. Givens (or Knowns). There is a standard (confidential) charge per square foot of lawn.
It is also assumed that grass can be cut at the rate of 2 square feet per second.

5. Formulas Needed. The following is a list of the formulas that will be needed in order to
provide the estimate.

Area of Yard = Lenth of Yard x Width of Yard

Area of House = Length of House x Width of House

Area of Lawn ~ Area of Yard — Area of House

Cost Estimate = Area of Lawn x Charge per Square Foot

Time Estimate = Area of Lawn
2

Minutes Time Estimate = Time Estimate
60

Figure 11. Design Example - Processing Required

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

$7 Lawn S a rv iea ALGORITHM 5

7. Algorithm. The following steps must be taken to solve the problem:
1. Get length and width of the yard.
2. Get length and width of the house.
3. Calculate the area of the house and the yard.
4. Calculate the area of the lawn.
5. Calculate the cost of mowing the lawn.
6. Calculate the time needed to mow the lawn.
7. Present the estimate to the customer.

Figure 12. Design Example - Algorithm Development

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6 TESTING L ara S a rv ie a §8

8. Testing. The program will be tested with the following scenarios:
1. The house is a 25 foot square house situated on a 50 foot square yard. The charge per
square foot is $0.01. The area to be mowed is 1875 square feet. Therefore, the cost of
mowing the lawn is $18.75. The estimated time for completion is 15.63 minutes.

2. The house is 1' by 20’ situated on a 5’ by 25’ yard. The charge per square foot is $0,005.
The area to be mowed is 105 square feet. Therefore, the cost of mowing the lawn is $0.53.
The estimated time for completion is 0.875 minutes.

Figure 13. Design Example - Testing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

40

§9 Lam S arv iea

S. INDEX.
Aggies: 1.
confidential charge: 1, 4.
strange yard: 8.

Figure 14. Design Example - Index

index 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

41

Lara Service

December 2, 1994

Section Page
Problem Statement 1 1
Problem Inputs 2 2
Processing Requirements 4 3
Problem Outputs.. 9 4
Algorithm.. 10 5
The Actual Program... 11 6
Testing .. 12 7
INDEX .. 13 8

Abstract. Aggie Lawn Service is a business which provides lawn care fo r the citizens o f Bryan-
College Sta tion . A n estimate fo r a potential custom er is provided which includes a cost statem ent
and an estimated time to complete the job.

Deborah Dunn
December 2, 1994

9:51

Figure 15. Program Example - Table of Contents

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

$1 Lara Sarviea PROBLEM STATEMENT 1

1. Problem Statement. Aggie Lawn Service is a business which provides lawn care
for the citizens of Bryan-College Station. An estimate for a potential customer is provided
which includes a cost statement and an estimated time to complete the job. The estimated is
based upon the area of the lawn and a standard (confidential) charge per square foot. Grass
can be cut at the rate of 2 square feet per second. It is assumed that a rectangular house is
situated in a rectangular yard. This estimate ignores any obstacles in the lawn, bare spots or
driveways, and does not account for breaks, slower/faster mowers, or the mower tunning out
of gas.

Figure 16. Program Example - Problem Statement

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2 PROBLEM INPUTS Lawn S a rv ic e §2

2. Problem Inputs. In order to provide an estimate for the customer, several items must
be received. It is assumed that a rectangular house is situated on a rectangular yard. The
following must be provided to solve the problem:
• length of yard
• width of yard
• length of bouse
• width of house

(Get Input Information 3) =

procedure G e tJ n p u t; *
begin "turtle('Plsassusntaruthaulsngtliuofuthsuyardruu')! 'readln(yard.length);
'uin<e('Plsass,jsntsruthsusidtbuOfuthsuyard:Uu*)i " readln(yard-width);
"u;n(e('Plsas»usntsruthsLJlengthuofuthSuhous«:uu‘); "readln(house.len);
'uin(e(*PIsasausntsruthsuBidthuoluthsuhouaa:uu')> "readln(house.w idth)"
end;

Thit code it uied in tection 11.

3. At this point I realize that 1 need to declare some variables in order to accomplish the
above input operations.
(Variable Declarations 3) —
"yardJength,yard.w idlh: real-,
"house.len,house.uiidth: real;
See al*o section* 7 and 8.
This code is used in section 11.

Figure 17. Program Example - Inputs Required

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4 PROBLEM OUTPUTS L am S a rv ie a $9

9. Problem Outputs. The customer will be provided with the final estimate which
includes the following items:

a the cost of mowing the lawn
a the estimated time (in minutes) to mow the lawn

(Provide Statement 9) =
procedure P rin fS ta lem en t;

begin 'u/h<e/n('iggiauLamuS arvica*: 25); "w riteln;
"write/n('Theuaraauolutheulaniuisiuu ', arta.of.law n : 5); “u rite ln;
‘ tvnte/n('TheuastxnatadIJcostu is:ijU$',ii//inj.am ounf : 5 : 2);
■uinfe('Thaue it ia a te d uti«#u fo rucoBplationui8 :Uu ');
~w ntcln(cutiing .lim c.cstim aic :4, 'usiinutes')"
end;

ThU code is used in section 11 •

Figure 18. Program Example - Outputs Required

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

45

S4 Uvn S s r v ic a PROCESSING REQUIREMENTS 3

4. Processing Requirements. Two items must be calculated for the estimate. The cost
of mowing the lawn and the estimated time to complete the job must be calculated.
5. Givens (or Knowns). There is a standard (confidential) charge per square foot of lawn.
It is also assumed that grass can be cut at the rate of 2 square feet per second.
(Constant Declarations s) =

*confidentiaLcharge = 1.25; " rate.of.cutting = 2;
Thu code u used in section 11.

6. Formulas Needed. The following is a list of the formulas that will be needed in order to
provide the estimate.

Area of Yard = Lenth of Yard x Width of Yard

Area of House = Length of House x Width of House

Area of Lawn = Area of Yard - Area of House

Cost Estimate = Area of Lawn x Charge per Square Foot
Area of LawnTime Estimate =

Minutes Time Estimate =
2

Time Estimate
60

(Calculations fi) =
procedure Calculatc-Arca-,

begin " area.of.yard *— yard.length * yard.width]
" area.of.house «— house.len * house.width;
' area.of.lawn «— area.of.yard — area.of.house"
end;

procedure C aicu la te.C ost.and .T im e;
begin 'hilling.amount <- area.ofJawn s confidentiaLcharge-,
"cutting .tim e.estim ate «— area.of.law n/(rate.of.cutting * 60.0)"
end;

Thii code ii used in lection 11.

7. I need some more variables declared in order to complete the above calculations.
(Variable Declarations 3) 4=
"area.ofJaw n, area.of.yard, area.of.house: real;

8. Oops, I almost forgot the last of the variable declarations. I need to declare the two areas
for my output.
(Variable Declarations 3) 4=
"hilling.am ount, cu tting .tim e.estim ate: real;

Figure 19. Program Example - Processing Required

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

$10 L tn S a rv ie a ALGORITHM 5

10. Algorithm. The following steps must be taken to solve the problem:
1. Get length and width of the yard.
2. Get length and width of the house.
3. Calculate the area of the house and the yard.
4. Calculate the area of the lawn.
6. Calculate the cost of mowing the lawn.
6. Calculate the time needed to mow the lawn.
7. Present the estimate to the customer.

Figure 20. Program Example - Algorithm Development

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6 THE ACTUAL PROGRAM Lavn S e rv ic e §11

11. The Actual Program. This is where the actual program begins. This could appear
anywhere in the HEB program. The only rule is that the program actually begin with the
’at-p’.

program law n .S trv icc ,
const '(Constant Declarations s)

var '(Variable Declarations 3)
'(Get Input Information 3)
'(Calculations 6)
"(Provide Statement 9)

begin "G ctJn p u t;

"Calcutale^Area;

"C alcvla te .C oit.ond .T im e;
" P rin t J ita lcm ent

end."

Figure 21. Program Example - The Actual Program

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

§12 Lara Sarviea TESTING 7

12. Testing. The program will be tested with the following scenarios:
1. The bouse is a 25 foot square house situated on a 50 fool square yard. The charge per
square foot is $0.01. The area to be mowed is 1875 square feet. Therefore, the cost of
mowing the lawn is (18.75. The estimated time for completion is 15.63 minutes.

2. The house is 1’ by 20’ situated on a 5’ by 25’ yard. The charge per square foot is $0,005.
The area to be mowed is 105 square feet. Therefore, the cost of mowing the lawn is $0.53.
The estimated time for completion is 0.875 minutes.

Figure 22. Program Example - Testing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

8 INDEX Laan Saraiea §13

13. INDEX.
Aggies: 1.
area.ofJiouse: 6, 7.
area.of.lawn: 6, 7, 9.
area.of.yard: 6, 7.
hilling.amount: 6, 8, 9.
Calculatc-Arca: £, 11.
C alculate.C osl.and.T im e: £, 11.
confidential charge: 1, 5.
confidentiaLcharge: 5, 6.
cutting .tim e.estim ate: 6, 8, 9.
G etJn p n t: 2, 11.
house.lcn: 2, 3, 6.
house.w idth: 2, 3, 6.
LawnJService: JJ..
P nnt^S ta tem ent: 2, 11.
rate.of.cutting: 5, 6.
readln: 2.
real: 3, 7, 8.
strange yard: 12.
turtle: 2, 9.
wrtteln: 9.
yard-length: 2, 3, 6.
yard.width: 2, 3, 6.

Figure 23. Program Example - Index

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

$13 Lam Sarviea NAMES OF THE SECTIONS 9

(Calculations 6) Dud in section 11.
(Constant Declarations s) Used in section 11.
(Get Input Information 2) Used in section 11.
(Provide Statement 9) Used in section 11.
(Variable Declarations 3, 7, s) Used in section u .

Figure 24. Program Example - List of Sections

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

51

III.D Design

The test study was implemented during the Fall 1993 semester at Texas A&M

University. The test was performed while teaching all topics normally taught in the CS/1

course. The students were scheduled for 3 hours of lecture and 2 one-hour supervised labs

per week, for a duration of 15 weeks. The equipment used by each student was an IBM

486 33 MHz PC compatible with 4MB on a Novell network. The equipment, computer

labs, and classroom were also used by the regular CS/1 course.

The students used an editing environment called web-mode [45]. The environment is

based on GNU Emacs [10]. The following topics were taught during the course:

• problem solving techniques, including top-down design, divide and conquer, and
hierarchical development;

a the syntax of the Pascal programming language;

a use of the web-mode editing environment and the GNU Emacs editor;

a an introduction to the T^X formatting language and the WEB rules and constructs.

A pre-test was administered at the beginning of the course which was designed to evaluate

the students’ computing background and problem solving skills as they entered the course.

They were periodically tested throughout the semester on problem solving, Pascal,

web-mode, emacs, and WEB rules and constructs.

The majority of the classroom lecture was spent on problem solving and Pascal syntax,

similar to the manner in which the course is regularly taught. Each of the remaining

topics, which were specific to the test study, were covered with the use of reference cards.

Most of the information on web-mode, emacs, T£X, and WEB was conveyed during the lab

time with the use of handouts and examples. The time spent on any one part of the edit,

compile, link, and debug process was reduced because of the extra WEB steps.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

52

III.E Participants

The group of novice programmers selected for the study were those enrolled in the

honors section of the introductory computer science course (CPSC 110H) at Texas A&M

University. This group was selected for three reasons: class size, computing background of

the students, and the author was an experienced teacher of this course.

The honors class was a relatively small test group. The regular introductory course

has an average enrollment of 175 students, while the honors section typically has about 40

students enrolled. In general, the students enrolled in the introductory course (both

honors and regular) have a limited knowledge of personal computers and/or programming.

Typically, many of the beginning computer science students have had at least one

semester of a high school computer class. They arrive with some limited knowledge of

programming language syntax (primarily Pascal and/or BASIC). These students are still

considered novice programmers because they rarely have experience in data structures,

solving large problems, or programming teams.

There are several qualifications for participation in the honors program at Texas A&M

University [72]. New freshmen must graduate in the top 10% of their class and score

1150+ on the SAT or 28+ on the ACT. All other students must attain a cumulative GPR

of 3.50 or above at Texas A&M to enroll in honors courses. Students must maintain a 3.25

GPR to continue in the honors program.

III.F Methods of Measurement

The results of the research were used to determine whether improvements in problem

solving and programming skills can be attributed to the use of literate programming. An

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

53

evaluation of the teaching methodology was made based on several factors:

1. Completion of a pre-test which was developed to indicate the students’ problem solving
ability and computing background as they entered the course.

2. Periodic tests which were designed to indicate the change in problem solving ability
and programming skills.

3. An evaluation of the programs and documentation produced and the consistency
between code and its corresponding documentation.

4. Completion of a post-test which indicates the students’ ability to solve problems and
write programs at the end of the test period.

5. An evaluation of the students’ performance in the subsequent P ro g ram m ing II course.

6. An evaluation of the students’ performance in the subsequent Data Structures course.

The results were expected to indicate an increase in problem solving ability over time.

Programmers who use the literate programming paradigm were expected to be more

problem-oriented rather than program-oriented.

Three methods for measuring the effect of literate programming on problem solving

were considered. The methods are described as follows:

1. The experimental group consists of students enrolled in CPSC 110H and the control
group consists of students enrolled in CPSC 110.

2. The subject class (CPSC 110H) can be divided evenly into an experimental and control
group.

3. An “expert” can be used for the evaluation of the students performance based on past
and present performance of honors and non-honors students.

III.F.l Method 1: CPSC 110H versus CPSC 110

This method employs the CPSC 110H class as the experimental group and the regular

CPSC 110 class as the control group. An evaluation of the experiment would be based on

the results of similar assignments given and similar tests administered throughout the

semester.

The advantages of this method are as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

54

• both groups use the same textbook;

• the study utilizes an experimental and a control group; and

• the classes are taught during the same semester.

The disadvantages of this method are as follows:

• there is a difference in the quality of the students (honors versus non-honors);

• different instructors teach the two courses; and

• there is a difference in class size (175+ versus 35+).

It was decided that this would not be a feasible method of measurement, primarily due to

the difference in instructor, class size, and the quality of the students.

III.F.2 Method 2: Dividing the CPSC 110H Section

This method divides the CPSC 110H class into an experimental and a control group

based on the particular lab section. An evaluation of the experiment would be based on

the results of similar assignments given and similar tests administered throughout the

semester.

The advantages of this method are as follows:

• the test study utilizes an experimental and a control group;

• the classes are taught during the same semester;

• one instructor teaches the course;

• both groups are honors students;

• class size is not a factor; and

• both groups use the same textbook.

The disadvantages of this method are as follows:

• the development environment is sometimes discussed in lecture; thus both
environments must be discussed during the same lecture;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

55

• the students will discuss their respective environments and will determine there is a
difference, which may affect the results; and

• if the environment is not discussed in lecture, lab time must be spent lecturing.

This would have been the preferred method but was not possible due to facilities and

resources necessary to support this format. Also, a mechanism to ensure the two groups

were created evenly is too costly and nearly impossible.

III.F.3 Method 3: CPSC 110H versus Previous CPSC 110/CPSC 110H

This method utilizes the CPSC 110H class in the experiment and relies on statistics

and the author’s “expert” opinion for the evaluation. An evaluation of the experiment was

based on assignments given and tests administered throughout the semester by the

author, past performance of honors and non-honors students, and performance of honors

and non-honors students in the subsequent Programming II course.

The advantages of this method are as follows:

• the author has been the primary instructor for the CS/1 course at Texas A&M
University for approximately 3 years;

t

• the author taught CPSC 110H at Texas A&M University during the Fall 1990
semester, therefore it may be used as a control group;

• differences in instructor, quality of student, class size, and textbook are not a factor;

• class lecture time may be spent discussing the development environment, leaving lab
time for development work; and

• the author has access to the final exam results for CPSC 110H during the Fall 1992
semester, as well as results for the non-honors classes for previous semesters.

The disadvantages of this method are as follows:

• the classes may not have used the same textbook;

• the comparison groups were not taught during the same time frame as the
experimental group;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

56

• comprehensive records for the comparison groups may not be available;

• the results of the evaluation rely on the author’s expert opinion; and

• the author may be biased.

III.F.4 Discussion

Method 3 was selected to be used due to the lack of resources and facilities. Rather

than attempt to implement a controlled experiment, a quasi-experimental approach was

utilized, from which it is possible to draw reliable inferences [20, 42]. The research

resembles an experiment, but lacks the controls of experimental research, such as a control

group [42].

After conducting the experiment, an extension to the evaluation procedure was made.

The CS/2 course is primarily a programming language course in which students are

taught C syntax. Therefore, it was decided that in order to evaluate problem solving skills,

an evaluation of the D ata Structures course might prove more beneficial.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

57

CHAPTER IV

IMPLEMENTATION OF A TEST STUDY

The test was performed during the Fall 1993 semester and the participants were those

students enrolled in the honors section of the CS/1 course. The course differed from other

CS/1 courses only in the sense that the WEB style of literate programming was utilized in

an attempt to enhance problem solving skills. All of the topics normally covered in the

CS/1 course were presented to the test group.

Many of the students had preconceived ideas about the course being explicitly “a

Turbo Pascal class.” Therefore, it was necessary to explain that a different environment

was to be used. Several students then perceived themselves as being “guinea pigs” for this

new development environment. However, at no time were the students told they were

participating in an experiment.

The focus of the semester was on problem solving. The students were taught Pascal

syntax, but the emphasis was on problem solving using the WEB style of programming. A

portion of the class was spent on learning (and evaluating) problem solving skills for the

design and development of programs. One method by which problem solving was taught

was by example. The students were given several examples of how to design solutions to a

problem. This technique of problem solving with examples was used throughout the

semester as the difficulty of the problems increased.

An important part of learning problem solving was to practice iteration in the design

of a solution. An iteration of the students’ problem solution was evaluated by the teaching

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

58

assistant. The students received feedback regarding their iterative process, such as

whether they were approaching the details of the problem at an acceptable level and

whether they were considering all aspects of the problem.

The final measurement in the design and development phase was made upon

completion of the program assignment. Each program was examined and an evaluation

made as to the correctness of the solution, the consistency of documentation and code,

and the quality of the documentation. The intent was to determine if the documentation

portion of a section was, in fact, an explanation of the code.

IV.A Test Study

This section is a detailed discussion about the test study. Tests and problems will be

described. The method by which the students were graded is presented, as well as a

description of what was expected from each of the labs. The course materials, including

tests, labs, and grading guidelines for the labs are included in Appendix A.

IV .A .l Course Materials

The required textbook for the course was Pascal: Understanding Programming and

Problem Solving, Third Edition by Douglas Nance. The same textbook was used in the

regular CS/1 course. The text had also been used in the course for the previous two

semesters. The textbook provides information on Pascal syntax, problem solving using

top-down design, and the Turbo Pascal system.

The test study participants were required to use the GNU Emacs editor, rather than

the editor provided with Turbo Pascal. They were given a GNU Emacs Reference Card

and were shown how to access the emacs tutorial. The reference card also includes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

59

information on navigating in web-moda (pages 114-115).

The information on TeX and WEB was conveyed primarily by example. The

participants were given an excerpt from the WEB user manual which contains a brief

description on how to write programs in the WEB language (pages 116-120). They were

also given several handouts to illustrate various T ĵK features (pages 131-139).

IV .A .2 Lab A ssignm ents

The students received six programming assignments throughout the course of the

semester. The quantity and degree of difficulty of each assignment was comparable to

those given in the previous CS/1 courses. Each assignment, except the first and the last,

was graded based on the initial design and the final lab. The first lab assignment was

designed merely to have the students use emacs and the web-mode environment. The last

assignment was graded on design and execution; however, the students were not required

to turn in an initial design, as the problem was merely a different implementation of a

previous problem.

In previous semesters, students were taught problem solving and were strongly

encouraged to prepare an initial design for their programs. In a few instances, they were

asked to turn in their design, which was usually submitted in handwritten form. The

students were also asked to document their programs and write well-styled programs. The

documentation typically took the form of explaining the purpose of a procedure or a

function.

The test study participants were required to turn in an initial design and were

required to use this design as the starting basis for their program development. There was

no predefined format to which the design had to conform. The only rule was that each of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

60

the following topics be addressed:

• problem statement;

• inputs required;

• outputs generated;

• processing required;

• algorithm; and

• testing.

It should be noted that this same list was given as a guide for design in the CS/1 course in

each of the previous semesters.

The test study participants were also given the requirement that they document their

programs. Each student received feedback on their initial design and, if necessary,

modified the design. Their documentation included the design requirements and provided

more information on what a particular step was accomplishing, rather than addressing the

purpose of a procedure or a function.

IV.A.3 Exams

The students were required to take three in-class exams and a comprehensive final

exam. The quantity and degree of difficulty of each exam was comparable to those given

in the previous CS/1 courses. Each exam, including the final, contained a question which

was designed to test the students’ problem solving ability. This was done in an attempt to

measure the participants’ problem solving ability over time. The questions increased in

complexity over the course of the semester. The exams also tested the students’

knowledge of Pascal syntax, emacs editor functions, features of the WEB language, and

web-mode functions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

61

The final exam was designed to test the subjects in the same manner in which

students had been tested in previous semesters. Exact or comparable questions were used

such that an unbiased comparison could be made. Again, the students were tested on

their knowledge of Pascal syntax, editing facilities, and their problem solving ability. The

results of the test study, including performance on labs and exams, are discussed in detail

in the next chapter.

IV.B Teaching Assistant

The performance of the students could also be affected by the teaching assistant

assigned to the course. The duties of the teaching assistant included the following:

• assisting the students during the scheduled lab time and during scheduled office hours;

• grading and providing feedback on the initial design for each lab assignment;

• grading the final design and program for each lab assignment; and

• providing instruction on WEB, TgiX, and Pascal, when necessary.

The teaching assistant was not familiar with literate programming prior to the test

study. However, he practiced literate programming techniques during the course in order

to provide assistance to the students.

The grading policy adhered to by the teaching assistant was not dictated by the

instructor, but was agreed upon by both the instructor and the teaching assistant. The

grading practices were strict, due to the nature of the study and the personality of the

teaching assistant. However, it is believed that the teaching assistant was fair, objective,

and comparable to the other teaching assistants the author has directed in previous

honors courses in his evaluation of the lab assignments.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

62

CHAPTER V

RESULTS

The honors computer science introductory course for the Fall 1993 semester was

selected as the subject class for the test study. The performance of the students enrolled

in this particular class was compared with the following groups of students:

• the honors computer science introductory course (CPSC 110H) for the Fall 1990
semester; and

• the honors computer science introductory course (CPSC 110H) for the Fall 1992
semester.

This chapter contains a detailed discussion of each of the groups. A comparison was

made between the performance of the test study participants and the students enrolled in

the other classes.

V.A Background/Experience of Test Study Participants

Thirty-eight students enrolled in the honors class during the Fall 1993 semester. The

administration of a pre-test provided information regarding the general background and

experience of the participants. The purpose of the pre-test was to establish that these

were, in fact, novice programmers. The results of the problem solving portion of the test

provided a basis for measuring the initial problem solving skills of the participants.

The students entered the course with a variety of backgrounds in computer science.

Only one student had never taken a computer science course and one student had taken

only a computer literacy/computer history course. Few of the students had any

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

63

background in computer science at the college level. Table 1 is a summary of the college

level experience of the participants.

Table 1. Unusual or Exceptional Computer Experience of Subjects

Count Exceptional Experience
1
4

C course at a Junior College
University level Fortran course

The majority of the students had some type of computer science class in high school.

Table 2 is a summary of the high school experience of the participants. Although there

were thirty-eight students enrolled in the class, many of the students had experience in

more than one of the areas listed.

Table 2. High School Computer Experience of Subjects

Count Computer Experience
8 Microcomputer applications, typically including DOS, WordPerfect,

Lotus 1-2-3, and/or dBase
8 Computer Math, which may or may not include some experience in

BASIC and/or Pascal
12 BASIC course
21 One or more semesters of Pascal

Despite the appearance of having a significant background in computers, these

students must still be considered novice programmers. Although a significant number had

some background in Pascal programming, fifteen felt they could program without the use

of a reference manual. Even so, their knowledge of advanced Pascal constructs cannot be

considered to be comprehensive.' None of the students had experience as a professional

programmer.

One student had limited experience with the emacs editor. The remaining thirty-seven

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

64

had no experience with emacs. None of the students had heard of WEB programming;

therefore, none of the test study participants had previous experience with literate

programming.

The pre-test included a question designed to provide some measurement of the

students’ initial problem solving ability. The students were asked to state the steps

necessary to solve a given problem. They were instructed to give detailed answers in

complete English sentences and paragraphs. The problem was stated as follows:

You are the manager of Aggie Lawn Service. Alvin is your new employee. You
must explain to Alvin the process of calculating an estimate for a potential
customer. (Of course, in the future this may use a hand-held computer.) The
quote will include a cost statement and estimated time to complete the job.

This estimate is based upon the area of the lawn and a standard (confidential)
charge per square foot. Grass can be cut at the rate of 2 square feet per second.
You may assume that a rectangular house is situated in a rectangular yard. Give
the details of the process and itemize all assumptions you have made.

It is difficult to measure a person’s problem solving ability. For example, it is easily

seen that the problem is a basic input-process-output problem. Each subject received

points if the necessary inputs and the required outputs were described. In terms of the

processing, many students felt it was sufficient to merely give the formula for the area of a

rectangle. They then subtracted the area of the house from the area of the lawn

(sometimes shown, again, as a formula).

In general, most of the students were able to give an answer which solved the problem.

However, several exceptions were noted as follows:

• some participants simply gave the necessary formula(s), omitting any description of
the inputs and/or outputs;

• some participants failed to describe their solution using complete English sentences
and paragraphs;

• some participants described the necessary inputs and the required processing, but
failed to produce a result; and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

65

• some participants made and described additional assumptions or expressed a need
for additional information regarding items such as driveways, sidewalks, trees, flower
beds, etc.

The students’ solutions were scored based on their ability to solve the problem.

Table 3 is a summary of the minimal set of problem solving issues that should have been

addressed or noted, with their associated point value.

Table 3. Problem Solving Issues

Points Problem Solving Issue
2 Obtain dimensions of yard
2 Obtain dimensions of house
2 Calculate area for house and yard
2 Calculate area for lawn to be cut
3 Calculate total cost to cut the lawn
3 Calculate the time for completion
2 Convert the time to minutes or hours
2 Produce the final cost for cutting lawn
2 Produce the time for completion

A final score of twenty indicates that the student adequately described the required

inputs, calculations, and necessary outputs. A student lost points for omitting information

or not describing the process in sentence form. A student could earn extra points by

addressing issues that were not explicitly mentioned, but might be a factor in solving the

problem.

Table 4 is a summary of the results of measuring the students’ initial problem solving

ability. There are 47.4% above and only 31.6% below average. The grade of “C” is

described as average, yet it is rare that a class will have as many D’s and F ’s as A’s and

B’s. The distribution of the data in Table 4 is consistent with grade distributions for the

CS/1 course over the last few years.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

66

Table 4. Initial Problem Solving Ability

Percent of
Students Problem Solving Ability

31.6 Excellent (18+ points)
15.8 Above average (16-17 points)
21.1 Average (14-15 points)
13.2 Below average (12-13 points)
18.4 Poor (below 12 points)

V.B CS/1 Class Information

The CS/1 course is open to students of all majors in the university. A particular CS/1

class may be distinguished by the semester it is taught, the instructor, the quality of

students, the textbook used, and the size of the class. Every attempt was made to address

each of these issues and to minimize the side effects of each issue.

The class selected for the test study was taught by the same instructor that taught one

of the comparison groups. The other comparison group was taught by a different

instructor. Each instructor covered the same material regarding programming and

problem solving in the comparison class.

The textbook selected for the CS/1 course normally changes every 1-2 years. An

attempt is made to select the textbook which best presents problem solving techniques

and Pascal syntax. The textbook used for the Fall 1990 semester was Turbo Pascal

4-0/5.0 by Walter Savitch. The textbook for the Fall 1992 semester was Pascal:

Understanding Programming and Problem Solving, Second Alternate Edition by Douglas

Nance. The test study participants were taught using Nance’s Third Edition of the Pascal

text. The textbooks are all similar enough that differences attributed to the use of

different texts are considered insignificant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

67

V .C S tu d en t Classification D istribu tion

The following is an analysis of the classification of students for each of the CS/1

classes. These distributions can be considered typical for the CS/1 course at Texas A&M

University.

Each of the subsequent tables could be presented in the form of counts or percentages.

The tables presented in this chapter are those deemed most informative. Each table is

presented in Appendix B in the alternative form.

Table 5 is a summary of the student classification distribution for the CS/1 course for

the subject and comparison classes (in percent form). The U1 classification indicates the

student is a freshman, U2 indicates sophmore, U3 indicates junior, and U4 indicates

senior. A chi-square test of independence was conducted to determine if the classification

and semester variables are related (or dependent). The critical value of X 2 for a = 0.10

and degrees of freedom = 6 is 10.64. The computed value, 10.96, exceeds 10.64, so we

conclude that the two variables are dependent. That is, the proportion of students of a

particular classification varies depending on the semester.

The honors classes typically have a large percentage of freshmen and sophmores. One

reason for this is that freshman computer science majors usually enroll in CS/1 their first

semester. The remaining students may be honors students in other departments that are

taking the course to satisfy their computer requirement.

Table 6 is a summary of the student major distribution for the CS/1 course for the

subject and comparison classes (in percent form). The honors classes typically have a

large number of computer science (CPSC) and computer engineering (CSEN) majors. A

chi-square test of independence was conducted to determine if the major and semester

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

68

Table 5. Student Distribution by Classification (Percent)

Semester U1 U2 U3 U4
Fall 90-H
Fall 92-H
Fall 93-H

77.8
69.0
68.4

16.7
16.7
29.0

2.8
14.3
0.0

2.8
0.0
2.6

variables are related (or dependent). The critical value of X 2 for a — 0.10 and degrees of

freedom = 2 is 4.605. The computed value, 3.972, does not exceed 4.605, so we conclude

that the two variables are not dependent. That is, the proportion of students of a

particular major does not vary depending on the semester.

Table 6. Student Distribution by Major (Percent)

Semester CPSC/CSEN Other
Fall 90-H 55.6 44.4
Fall 92-H 59.5 40.5
Fall 93-H 76.3 23.7

V.D Problem Solving Performance

One of the primary motivations for conducting the study was to determine if the use of

the literate program paradigm leads to improved problem solving skills. Traditionally,

instruction in the introductory courses emphasizes the product of design (programs), but

not the design process itself [35]. This emphasis is reinforced because teachers place a

grade on the running program and not the process that produced it. Grades are assigned

based on the success (or failure) of the program, given certain test cases, and not on the

design of the program [35].

The introductory course at Texas A&M University can be considered typical and, in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

69

the past, has been taught using this same grading mechanism. A portion of the grade has

been assigned based on the program documentation, and the remainder of the grade has

been determined based on if the program ran with selected test cases. For this reason,

there are no comparison figures available for validating the test group’s problem solving

skills. However, the problem solving skills of the test group were measured periodically

during the semester and it can be determined if these skills improved.

V .D .l Problem Solving Performance of the Test Group

The actual scores received by the test group on the problem solving portion of each lab

are included in Appendix C. The mean and the standard deviation of the scores for the

problem solving portion of each lab are shown in Table 7 and Table 8.

Table 7. Mean Problem Solving Scores - Labs (Percent)

Lab Overall Majors Non-Majors
Lab 2 83.1 80.6 91.3
Lab 3 83.6 81.9 89.8
Lab 4 88.4 87.5 91.3
Lab 5 89.8 88.3 94.8

Table 8. Standard Deviation of Problem Solving Scores - Labs (Percent)

Lab Overall Majors Non-Majors
Lab 2 16.9 18.5 4.2
Lab 3 17.0 18.5 7.2
Lab 4 10.5 11.4 5.9
Lab 5 10.7 11.6 4.1

The problem solving skills for the test group (as well as the difficulty of the problems)

increased over the course of the semester. This increase in problem solving skills was

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

70

experienced by both computer science majors and non-majors.

Notice that the non-computer science majors consistently scored higher on program

design than the computer science majors. This may be attributable to the fact that many

of the computer science majors had some experience in Pascal prior to the class. This

experience may affect the students’ problem solving skills for two reasons. Firstly, as

stated earlier, it is sometimes difficult to change the way a person has learned to perform

a particular task. Secondly, this previous programming skill may have detracted from

their ability to separate problem solving from programming.

The actual scores received by the test group on the problem solving portion of each

test are included in Appendix D. The mean and standard deviation of the scores for the

problem solving portion of each test are shown in Table 9 and Table 10.

Table 9. Mean Problem Solving Scores - Tests (Percent)

Test Overall Majors Non-Majors
Pre-Test 72.6 74.0 68.3
Test 1 78.8 79.7 76.1
Test 2 66.6 65.7 71.6
Test 3 80.9 80.3 82.7
Post-Test 76.6 76.2 77.8

Table 10. Standard Deviation of Problem Solving Scores - Tests (Percent)

Test Overall Majors Non-Majors
Pre-Test 0.25 0.27 0.15
Test 1 0.12 0.12 0.11
Test 2 0.18 0.20 0.12
Test 3 0.15 0.16 0.10
Post-Test 0.24 0.24 0.25

It is difficult to determine whether or not the problem solving skills for the test group

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

71

increased over the course of the semester. The class, as a whole, experienced a decrease in

scores on the second test, although there was a greater decrease for computer science

majors. This decrease in scores for the second test may be attributed to the fact that the

problem for that test was significantly different and more difficult than any of the

problems encountered previously during the lab or on a test. The scores also decreased on

the post-test, or final exam, as compared to the third test; however, they still improved as

compared to the scores on the pre-test.

The problem solving scores, as a whole, were higher on the labs than they were for the

exams. This was to be expected since the problem solving portion of the lab was not

developed under stressful situations, as in the test-taking scenario. Another reason for

having higher scores in the lab is that measuring problem solving skills is not something

we are used to doing on a test. It is much easier to evaluate someone’s problem solving

skills developed through iteration during lab than it is to evaluate one-time problem

solving skills on a test.

V.E Programming Performance

Another motivation for conducting the study was to determine if the literate

programming paradigm can improve program quality as a result of improved problem

solving. Program quality, however, is difficult to define without studying maintenance of

code over a period of several years.

V .E.l Programming Specifications for the Comparison Groups

The programs for the Fall 1990 honors CS/1 comparison group were graded based on

program style, or documentation, and program execution, or “correctness.” For grading

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

72

purposes, 40% of the grade was based on style, with the remaining 60% of the grade based

on execution.

Program style refers to how well the programs were documented. Two levels of

documentation were defined:

• program/module level • where the programmer gives a general description of the intent
of the program and/or module. Some modules implement rather complex algorithms,
so their descriptions are more detailed than the others. Other modules might make
important assumptions that should be mentioned.

• code level - where the programmer explains what the program is doing at a particular
moment in time.

Style includes the use of meaningful names for identifiers, indentation and white space for

program readability, and limited use of global variables. All of the above can be combined

to create a well-styled program.

The first program assignment was a Pascal source code listing that the students

entered using the Turbo Pascal editor. The program was then compiled, debugged (if

necessary), and executed. The program was designed as a learning exercise for the edit,

compile, test, and debug process.

The remaining programs were assigned in problem specification form. The students

were given a problem to solve using specific constructs, such as i f - th e n -e ls e , vh ile -do ,

and case. They were also told to use certain types of subprograms, parameter passing, file

manipulation, and data structures.

There is no data on programs for the Fall 1992 honors comparison group. This is due

to the fact that it was taught by a different instructor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

73

V.E.2 Programming Specifications for the Test Group

The program grading guidelines for the test group are included in Appendix A. The

programs were graded based on program design, documentation, and program execution,

or “correctness.” For grading purposes, 50% of the grade was based on documentation

and design, with the remaining 50% of the grade based on execution.

Program documentation and design addressed the design issues, such as problem

statement, required inputs, outputs generated, processing required, algorithm

development, and testing. Included in the grade was the degree of consistency between the

documentation and the implementation. The two levels of documentation defined

previously (program/module and code), and the specifications for a well-styled program

were also included in the documentation and design portion of the grade.

The first program assignment was a WEB source code listing that the students entered

using the emacs editor. The program was then WEAVEd and TfcjXed to produce a

device-independent file which was then converted by a printer driver to produce a

hardcopy listing of the program. The program was also TANGLEd, compiled, debugged (if

necessary), and executed. The program was designed as a learning exercise for the edit,

WEAVE, TfcjX, dvips, TANGLE, compile, test, and debug process.

Like the comparison groups, the remaining programs were assigned in problem

specification form. The students were given a problem to solve and part of the process was

to extract (from the instructor and/or the teaching assistant) the necessary information

for solving the problem. Specific constructs, such as i f - th e n -e ls e , w hile-do, and case,

were used for the assignments. Like the comparison groups, they were told to use certain

types of subprograms, parameter passing, file manipulation, and data structures.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

74

V.E.3 Programming Performance of Test Group versus Comparison Groups

The actual scores received by the test and comparison groups on each lab are included

in Appendix C. The mean and standard deviation of the scores for each lab are shown in

Table 11 and Table 12.

Table 11. Mean Program Scores

Semester Lab 1 Lab 2 Lab 3 Lab 4 Lab 5 Lab 6 Lab 7
Fall 90-H
Fall 93-H

99.0
89.8

99.2
85.8

94.2
87.8

92.0
77.9

94.1
76.6

90.0
75.7

90.5
N/A

Table 12. Standard Deviation of Program Scores

Semester Lab 1 Lab 2 Lab 3 Lab 4 Lab 5 Lab 6 Lab 7
Fall 90-H
Fall 93-H

3.16
14.75

2.06
22.29

6.66
22.99

8.44
23.67

4.72
32.45

9.92
34.71

14.91
N/A

Notice the scores received by the test group are much lower than those received by the

comparison group and the standard deviation is much higher.

The primary reason for the test group receiving lower program scores than the

comparison group is due to the grading mechanism used for the test study. The programs

were graded using more strict guidelines and high quality design was expected of the

students.

There may be several reasons for experiencing lower program scores using this

program development methodology:

1. The students experienced trouble comprehending the steps necessary for processing
a WEB program; however, the degree of difficulty should be reduced over a period of
extended use.

2. The programs themselves were not more difficult; however, the difficulty of the
program may have been emphasized because less information about solving the
problem was given to the students.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

75

3. The debugging facility which is available in Turbo Pascal was not an option for the
students, thus the debugging task was more difficult and the debugging time was
increased.

4. Several students submitted programs that did not run in order to receive credit for
the design, thus lowering the average.

Although it appears the test study group did not perform as well on the programming

assignments as the comparison groups, this is not necessarily the case. Several of the

students in the test study group could not fully grasp the concept problem solving with

the use of WEB programming. However, the majority of the students performed well.

The quality of the programs, including documentation, was much higher for the test

study group. Their program documentation contained of all of the necessary design steps,

including design rationale and testing. The documentation produced by the comparison

groups typically included only items such as identifier descriptions and the purpose of the

subprograms. The higher quality of the documentation produced by the test study

participants is certainly not reflected in the grades.

V.F Exam Performance

One of the methods by which the students were measured and compared was with the

use of in-class exams. The purpose of the exams was to measure problem solving ability

and knowledge of Pascal syntax.

V .F.l Exam Structure for the Comparison Groups

The exam structure for the comparison groups was tailored more towards measuring

knowledge of Pascal syntax and programming. The questions on the exams for the honors

CS/1 classes were designed to test the students’ Pascal knowledge and their ability to use

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

76

specific constructs rather than their problem solving ability.

The final exam for the Fall 1990 honors class consisted of 69 true/false and multiple

choice questions about Pascal syntax and concepts. The remaining questions tested the

students’ ability to write Pascal programs. The final exam for the Fall 1992 honors class

consisted of questions which tested the students’ ability to write portions of programs

(Pascal syntax) and implement specific data structures. Although the ability to write

programs involves using some type of problem solving ability, the students in the

comparison groups were not specifically tested on their problem solving ability.

V.F.2 Exam Structure for the Test Group

The exams for the test study group were designed to test the students’ knowledge of

Pascal as well as their problem solving ability. Approximately 25% of each exam tested

problem solving skills. The remaining 75% of each exam tested the students’ knowledge of

Pascal concepts and their programming ability much in the same way the comparison

groups were tested. The exams for the test group, including the pre-test and the final, are

included on pages 112-113 and 146-188 in Appendix A.

The final exam for the test study participants was designed such that specific

comparisons could be made between the test study group and the comparison groups.

This was accomplished by using, where possible, the same (or similar) questions on the

exam to test knowledge of Pascal syntax.

V.F.3 Exam Performance of Test Group versus Comparison Groups

The actual scores received by the test and comparison groups on each exam are

included in Appendix C. The mean and standard deviation of the scores for each exam are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

77

shown in Table 13 and Table 14.

Table 13. Mean Exam Scores

Semester Exam 1 Exam 2 Exam 3 Final Exam Pascal Concepts
Fall 90-H 83.1 77.7 70.6 74.4 74.4
Fall 92-H N/A N/A N/A 73.5 N/A
Fall 93-H 78.6 74.7 75.4 75.0 77.3

Table 14. Standard Deviation of Exam Scores

Semester Exam 1 Exam 2 Exam 3 Final Exam Pascal Concepts
Fall 90-H 11.06 12.26 11.53 10.81 9.11
Fall 92-H N/A N/A N/A 15.75 N/A
Fall 93-H 10.23 12.31 13.35 12.21 12.27

The Mann-Whitney U-test (also known as the Wilcoxan Rank Sum Test) can be used

to determine if there is a significant difference between the exam performance of the test

study group and the exam performance of the comparison classes. The Mann-Whitney

U-test is a statistical test used to determine if there is a statistically significant difference

between the performance of two independent groups [11,16,47]. This test is similar to the

t-test and makes three assumptions:

1. Both samples are random samples from their respective populations.

2. In addition to independence within each sample, there is mutual independence between
the two samples.

3. The measurement scale is at least ordinal.

If both sample sizes are 10 or larger (as is the case here), the sampling distribution of

T is approximately normal, which allows us to U6e a z statistic.

The Mann-Whitney U-test was conducted to determine if there was a significant

difference between the exam performan of the test study group and that of the Fall 1990

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

78

comparison class. The critical value of z for a = 0.10 is 1.282. The computed value,

0.04708, does not exceed 1.282, so we conclude that the distributions of grades on the final

exam for the two groups are not significantly different.

We can use the same test to compare the Fall 1992 honors comparison group with the

test 6tudy group. The computed value, 0.1244, does not exceed 1.282, so again we

conclude that the distributions of grades on the final exam for the two groups are not

significantly different.

Each of the final exams are equivalent in nature and level of difficulty. Each final exam

also contained questions designed specifically to test the students’ knowledge of Paseal

concepts and syntax. The test study group scored higher than both of the comparison

groups when tested on their knowledge of Pascal. Therefore it can be concluded that the

teaching methodology has no detrimental effect on the students’ ability to perform well on

exams testing both Pascal knowledge and problem solving ability.

V.G Course Performance

Another method by which the students were measured and compared was their overall

performance in the CS/1 course as determined by their final grade. The actual figures for

the grade distribution tables in this section are included in Appendix B. The percentages

below include only those students that completed the course. The grade classification of

Other (which is not included in the calculations below) are those of Q (dropped before the

semester deadline), WP (withdrew passing), W F (withdrew failing), NG (no grade for the

course), S (satisfactorily passed), and U (unsatisfactory).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

79

V .G .l Course Performance of Test Group versus Comparison Groups

Table 15 is a summary of the overall grade distribution for students completing the

CS/1 course for the subject and comparison classes (in percent form).

Table 15. Overall Grade Distribution (Percent)

Semester A B C D F
Fall 90-H
Fall 92-H
Fall 93-H

20.6
51.3
24.3

50.0
20.5
40.5

14.7
20.5
21.6

5.9
2.6
5.4

8.8
5.1
8.1

The percentage of students that passed the CS/1 course was similar for each of the

classes. A grade of “A”, “B”, or “C” is considered passing. The Fall 1990 and the Fall

1992 comparison groups had 85.3% and 92.3% of the students, respectively, pass the

course. The test group had 86.4% of the students pass the course.

Table 16 is a summary of the grade distribution for computer science majors

completing the CS/1 course for the subject and comparison classes (in percent form).

Table 16. Grade Distribution for CPSC/CSEN Majors (Percent)

Semester A B C D F
Fall 90-H
Fall 92-H
Fall 93-H

20.0
50.0
28.6

55.0
16.7
32.1

10.0
20.8
25.0

5.0
4.2
7.1

10.0
8.3
7.1

The percentage of computer science students that passed the CS/1 course was

comparable for the test study group and each of the comparison groups. The Fall 1990

and the Fall 1992 comparison groups had 85.0% and 87.5% of the computer science

students, respectively, pass the course. The test group had 85.7% of the computer science

students pass the course.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

80

Table 17 is a summary of the grade distribution for non-computer science majors

completing the CS/1 course for the subject and comparison classes (in percent form).

Table 17. Grade Distribution for Other Majors (Percent)

Semester A B C D F
Fall 90-H
Fall 92-H
Fall 93-H

21.4
53.3
11.1

42.9
26.7
66.7

21.4
20.0
11.1

7.1
0.0
0.0

7.1
0.0
11.1

The percentage of non-majors that passed the CS/1 course was 100.0% for the Fall

1992 comparison group. The percentage of non-majors that passed the CS/1 course in the

test study group was 88.9%, while the Fall 1990 comparison group had 85.7% pass the

course.

Figure 25 shows the percentage grade distribution for each of the CS/1 classes. Notice

that the grade distribution for the Fall 1992 comparison group is much different from the

distributions for the Fall 1990 comparison group and the Fall 1993 test group. This

difference in distributions is largely attributable to the difference in instructors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

cl
as

s
wi

th

g
ra

d
e

81

70

60

50

40

30

20

10

0
CB D FA

• Fall 1990
o Fall 1992
♦ Fall 1993

g rad e

Figure 25. CS/1 Course Grade Distribution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

82

V.H CPSC 120 Performance

Another method by which the students were measured and compared was their overall

performance in the CS/2 course as determined by their final grade. The actual scores

received by the test and comparison gToups in the CS/2 course are included in

Appendix C. The calculations given include only those students that completed the CS/2

course.

V.H.l Subsequent Course Performance of Test Group versus Comparison

Groups

Approximately 65-70% of the honors CS/1 students enrolled in the CS/2 course (73.5%

of the Fall 1990 class, 66.7% of the Fall 1992 class, and 67.6% of the Fall 1993 class).

Table 18 is a summary of the overall grade distribution for the subsequent CS/2 course

for those students in the subject and comparison classes in percent form.

Table 18. Overall CS/2 Grade Distribution (Percent)

Semester A B C D F
Fall 90-H
Fall 92-H
Fall 93-H

68.0
73.1
52.0

28.0
19.2
40.0

4.0
7.7
4.0

0.0
0.0
0.0

0.0
0.0
4.0

At first glance it appears that the students in the Fall 1990 honors and the Fall 1992

comparison classes performed much better than the students in the test study group in

the CS/2 class. Both of the comparison groups had a higher percentage of students make

“A”s in the subsequent course. However, all of the classes had over 90% of the students

make an “A” or a UB” in the course.

Figure 26 shows the percentage grade distribution for each of the CS/2 classes. Notice

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

83

that there is no significant difference in the grade distributions for the test study group

and both of the comparison groups.

QJ
~Dra
L-
U)

JZ-I-'
’2
in
in

_ro
u

• Fall 1990
o Fall 1992
♦ Fall 1993

g ra d e

Figure 26. CS/2 Course Grade Distribution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

84

Table 19 is a comparison of the average grades in the CS/1 class and the subsequent

CS/2 class for those students in the subject and comparison classes. The grade point

shown is out of a total possible grade of 4.0. The Mann-Whitney U-test was used to

conclude that there is not a significant difference in average grade point ratio for any of

the groups.

Table 19. Average Grade for CS/1 and CS/2 Courses

Semester CS/1 CS/2
Fall 90-H
Fall 92-H
Fall 93-H

2.676
3.103
2.676

3.640
3.654
3.360

This may still not be a good representation of how the students in the subject and

comparison classes performed in the subsequent course. These grades can be evaluated in

terms of the particular section and semester the class was taken and the instructor that

taught the class.

Table 20 is a summary of the average difference in grades between the subject class,

the comparison classes, and the other CS/2 classes. This summary is itemized by section,

instructor, and semester.

The actual figures for the grade distribution for each of the CS/2 classes are included

in Appendix E.

Table 20. Average Difference in Grade for CS/2 Classes

Semester Diff. in Section Diff. in Instructor Diff. in Semester
Fall 90-H +0.02 +0.01 +0.01
Fall 92-H +0.03 +0.01 +0.01
Fall 93-H +0.06 +0.05 +0.09

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

85

With these figures, it is shown that the students in the CS/1 comparison classes scored

somewhat higher than their peers in the same section of the CS/2 course. However, those

students in the CS/1 test group scored even higher than their peers in the same sections

of the CS/2 course. This data was also analyzed including the CS/2 instructors and

semester. The same results held.

When the performance of the students in the test study group was compared with the

performance of their peers, it was determined that the students in the test study group

actually scored higher than the students in the comparison groups (and the other

students) in the CS/2 course.

V.I CPSC 210 Performance

The final method by which the students were measured and compared was their

overall performance in the Data Structures course as determined by their final grade. The

Data Structures course is the first course students take upon completion of the CS/1 and

CS/2 courses. At this point, the students are no longer learning programming languages.

Instead, they are using their programming and problem solving abilities in the “design of

algorithms for efficient implementation and manipulation of data structures” [72]. In other

words, this is the course where good problem solving skills take precedence over

programming ability.

The actual scores received by the test and comparison groups in the Data Structures

course are included in Appendix- C. The calculations below include only those students

that completed the Data Structures course.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

86

V .I.l Data Structures Course Performance of Test Group versus Comparison

Groups

Approximately 45-55% of the honors CS/1 students enrolled in the Data Structures

course (55.9% of the Fall 1990 class, 56.4% of the Fall 1992 class, and 45.9% of the Fall

1993 class).

Table 21 i6 a summary of the overall grade distribution for the Data Structures course

for those students in the subject and comparison classes in percent form.

Table 21. Overall Data Structures Grade Distribution (Percent)

Semester A B C D F
Fall 90-H
Fall 92-H
Fall 93-H

21.1
50.0
52.9

63.2
13.6
35.3

15.8
22.7
11.8

0.0
9.1
0.0

0.0
4.5
0.0

Not only did the test study group have a larger percentage of students make an “A” in

the course, but a larger percentage of students made an “A” or a “B” in the course.

Figure 27 shows the percentage grade distribution for each of the Data Structures

classes. Notice that there is a significant difference in the grade distributions for the

groups.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

87

7 0 -

o, 60
XIra
b) 50

4 0 -

in
i/irp
u

20

10 -

g ra d e

• Fall 1990
o Fall 1992
♦ Fall 1993

Figure 27. Data Structures Course Grade Distribution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

88

Table 22 is a comparison of the average grades in the CS/1 class, the CS/2 class, and

the Data Structures class for those students in the subject and comparison classes. Again,

the grade point shown is out of a total possible grade of 4.0. Using an unpaired t-test,

with a = 0.10, it was concluded that there is a significant difference in average grade for

the Data Structures course between the Fall 1993 test group and both the Fall 1990 and

the Fall 1992 comparison groups.

Table 22. Average Grade for CS/1, CS/2, and Data Structures Courses

Semester CS/1 CS/2 DS
Fall 90-H
Fall 92-H
Fall 93-H

2.676
3.103
2.676

3.640
3.654
3.360

3.053
2.955
3.412

A chi-square test of independence was conducted to determine if the grade and CS/1

semester variables are related (or dependent). The critical value of X 2 for a = 0.10 and

degrees of freedom = 8 is 13.36. The computed value, 15.368, exceeds 13.36, so we

conclude that the two variables are dependent. That is, the proportion of 6tudent6

receiving a particular grade varies depending on the semester in which they took CS/1.

Figure 28 shows the progression of average grades for the Fall 1993 test study group

and both the Fall 1990 and the Fall 1992 comparison groups. Notice that the test study

group demonstrates an upward progression in terms of average grade. Both of the

comparison groups increase in average grade from the CS/1 to the CS/2 course. However,

the average grade for both groups drops significantly in the Data Structures course.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

89

3.8

3.6
<U
cnro
L.
(1)
>
03

3.4

4->
.£ 3 .2
o
a
aj
■oTO
cn

3.0

• Fall 1990
o Fall 1992
♦ Fall 1993

2.8

2.6
CS/1 C S /2

c o u r s e

Figure 28. Grade Progression

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

90

When the performance of the students in the test study group was compared with the

performance of their peers in a course which requires extensive problem solving skills, it

was determined there is a significant difference in the performance of the students in the

test study group compared with the performance of the students in the comparison groups.

V.J Student Evaluation of CPSC 110 Teaching Methodology

Upon nearing completion of the CS/1 course, the students were asked to submit a

paper reflecting their feelings and attitudes towards the WEB programming methodology. It

was stressed that statements made would in no way affect their grade in the course.

A graphic rating scale [44] was developed and the reports were evaluated in order to

appraise the students’ reactions to the WEB programming process. The scale consisted of

five categories, rated 1-5. In addition, the scale contained a “not discussed” , rated 0,

category. Three people evaluated the reaction of the test subjects. None of the people had

prior training in rating. The rating scale and reproductions of the student reports can be

found in Appendix F. Below is a summary of the results of the rating process. The “not

discussed” selections were not included in the calculations. The mean and the standard

deviation of the scores for each of the raters are shown in Table 23 and Table 24.

Kendall’s coefficient of concordance [44] was used to evaluate the raters. The result was a

value of 0.673, which indicates there was a modest level of agreement between the raters.

The first question required that the raters assess the students’ original reaction to

being told they were going to learn something called WEB programming. Although a few of

the students were enthusiastic about the idea, many were unhappy with the fact that they

were going to be using a different methodology.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

91

Table 23. Evaluation of Fall 1993 CPSC 110H Students’ Reactions

Question Rater 1 Rater 2 Rater 3 Overall
1 3.21 2.81 2.52 2.85
2 3.20 1.60 3.25 2.67
3 2.69 2.64 1.87 2.43
4 3.44 3.14 1.67 2.88
5 3.41 3.28 2.90 3.20
6 3.54 2.87 3.57 3.31

Table 24. Standard Deviation of Rating Scale

Question Rater 1 Rater 2 Rater 3 Overall
1 0.94 1.00 1.13 1.07
2 1.05 1.17 1.02 1.33
3 1.26 1.26 1.31 1.32
4 1.17 1.22 1.25 1.38
5 1.33 1.36 1.47 1.41
6 1.35 1.09 0.68 1.12

Much of the unhappiness was due to the fact that many of the students entered the

course with prior expectations about what is taught in the class. The second question

required that the raters assess the students’ original expectation of the class. As shown by

the ratings, most students entered the course under the impression that CPSC 110H was a

course in Turbo Pascal, despite the course description.

The next three questions required that the raters assess the students’ reactions to the

GNU Emacs editor, T£X, and WEB programming. Many of the 6tudent6 objected to the

use of the emacs editor. This may be due to the fact that the user interface is not

extremely user-friendly, especially to the novice user. The students were required to use

predefined keystrokes, rather than pull-down menus.

Although a minimal amount of T^X knowledge is required, the students seemed to find

the language difficult. Although several examples were provided, with a variety of TftX

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

92

commands, they students did not seem to adapt well to the use of TgjX. Despite the lack of

T^X knowledge, the students seemed to adapt to the WEB environment. The raters seemed

to believe the students’ reaction to the WEB programming process was a bit above average.

The lack of enthusiastic response may have been due to their overall difficulty in

understanding the WEB process and concepts. The last question required that the raters

assess the students’ overall understanding of the WEB process. In general, the students’

understanding was average to good. Many of the students continued to have difficulty

separating the concepts of editor, WEB files, T£X commands, etc. They seemed

overwhelmed with having to learn more than just the Pascal language using the Turbo

environment, despite the attempt to minimize the amount of material with the use of

reference cards.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

93

CHAPTER VI

SUMMARY, CONCLUSION, AND FUTURE WORK

VI.A Summary

The cost of software development is a subject of concern for software researchers and

developers. The dominant portion of the lifetime cost of software is not in the

development, but in the maintenance of the software. Research in the area of improving

the quality of software documentation to reduce maintenance costs is increasing [49, 68].

Donald Knuth coined the phrase “literate programming” to refer to programs that are

meant to be read by human beings, as well as executed by a computer. His original intent

was that WEB programs be written and used by experienced programmers [28]. However,

with practice, even less experienced programmers have had success with writing WEB

programs [45, 62, 63].

A WEB consists of documentation, written in a formatting language, and program

statements, written in a programming language. The WEAVE process prepares a

combination of the documentation and the program to be read by humans. The TANGLE

process extracts the program statements and creates a source program file to be executed

by the computer.

The methods with which we teach programming and problem solving to our

introductory students is an important research topic. Linn and colleagues have done an

extensive amount of work using case studies and templates to teach programming. The

basic premise is that students should be taught how an expert uses knowledge about a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

94

previously solved problem in order to solve a new problem [34, 35, 37, 38, 58].

Soloway and colleagues have also performed research in the area of teaching novice

programmers how to solve problems. They have found that the students have trouble

“putting the pieces together” in order to solve the problem [64, 66, 69], rather than with

Pascal syntax and constructs.

This research involved the use of the literate programming paradigm in the

introductory computer science class in order to improve the software development process.

The methodology combines literate programming with the problem solving process to

capture, document, and emphasize the problem solving process.

The program development methodology was used in the introductory computer science

course at Texas A&M University. The students enrolled in the Fall 1993 honors class were

required to use the development environment, web-mode, to create WEB programs. The

lecture time was spent discussing problem solving techniques and the syntax of the Pascal

programming language. During the lab time, the students were required to use the editing

environment (web-mode), which is based on GNU Emacs. They also received an

introduction to the TgX formatting language and the WEB rules and constructs.

The students initially designed their problem solution using the WEB rules. They

received feedback on their design and, using their design and any suggested changes,

implemented their solution using the Pascal programming language.

The program development methodology was evaluated using several different measures:

1. The students were given a pre-test and were then tested periodically to evaluate their
problem solving skills.

2. The students were compared with past introductory computer science course students
to evaluate their performance on programming assignments, exams, and in the course.

3. The students were compared with past introductory computer science course students
to evaluate their performance in the subsequent CS/2 course.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

95

4. The students were compared with past introductory computer science course students
to evaluate their performance in the Data Structures course.

VI.B Conclusion

The Fall 1990 Honors CS/1 course was taught in a manner that differed somewhat

from the traditional CS/1 course. The students used an editor, a formatting system, and a

coding style that was new to all. The students’ performance in subsequent courses was not

hurt and may have been helped with the different methodology. Therefore, it can be

concluded that the use of literate programming in the introductory computer science class

was successful. The results of using the program development methodology in the CS/1

course indicate that the methodology is successful in teaching novice programmers good

problem solving skills.

These are the results of the experiment:

• The students showed an increase in their problem solving skills.

• Those students unfamiliar with the Pascal programming language, or any other
programming language, were more successful then those familiar with Pascal at using
the literate programming paradigm to capture and document their problem solving
process.

• The students were able to learn the WEB rules, the web-mode environment, GNU
Emac6, and T^X rules, as well as the Pascal syntax and constructs.

• Those students exposed to the program development methodology utilizing the literate
programming paradigm were as successful in the subsequent CS/2 course as those not
exposed to the methodology.

• Those students exposed to the program development methodology utilizing the literate
programming paradigm were significantly more successful in the Data Structures
course than those not exposed to the methodology.

• The subject program development methodology may lead to an improved software
development process; however, more tests should be conducted.

Negatives that are not felt to offset the positives:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

96

• The program scores were not as high for those students using literate programming.

Other points of interest include:

• The use of two one-hour lab sections is recommended as an effective teaching design
rather than the use of one two-hour lab section. This appears to reinforce iteration
of the problem solving process.

• Those students familiar with the Pascal programming language, or another
programming language, exhibited more resistance to change.

VI.C Extensions and Future Research

The literate programming development methodology should be used in the

introductory computer science course repetitively to see if the performance experienced

during the test study remains consistent, improves, or fades. More importantly, tests

should be performed to verify that neophytes do, indeed, experience more success using

the literate programming paradigm than those with some programming experience.

Tests should also be performed to compare the readability or, more importantly, the

understandability of a WEB program to a “regular” program. This could be accomplished

in several ways. The students could be given a “regular” program and then be required to

answer questions about the program. They could then be given the WEB program, be

required to answer questions about the program, and a determination could be made as

which program was easier to read. There may some discrepancy as to whether or not prior

understanding of the “regular” program affected the understanding of the WEB program.

This same concept of comparison could be used to test the maintainability of a

program. Two sets of students could be required to modify a program. One group will be

required to perform maintenance on a “regular” program and the second group be

required to perform maintenance on a WEB program. The results could then be used to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

97

determine the maintainability of a WEB program.

The tests regarding the readabilty and maintainability of a program could be

conducted in the educational environment. However, a study regarding the

maintainability of a WEB program versus a “regular” program should be performed over

several years of the program’s lifetime.

It is believed that extended use of the literate programming methodology may lead to

improved problem solving skills and, therefore, improve the software development process.

For this reason, the program development methodology should continue to be tested

throughout all levels of the undergraduate curriculum. A study should be performed in

which the literate programming development methodology is used by a group of students

over the course of their college career. This study might also compare students with no

programming experience to those with some exposure to programming languages.

Extended use of the program development methodology can be used to improve the

problem solving skills for novice programmers. It should prove to be an effective means for

teaching problem solving and programming in the introductory computer science course.

The improvement in problem solving skills should result in well-documented, higher

quality software that is easier to read and maintain.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

98

REFERENCES

1. Bentley, J. Programming pearls—literate programming. Communications of the ACM
29, 5 (May 1986), 364-369.

2. Bishop, J. M., and Gregson, K. M. Literate programming and the LIPED environment.
Structured Programming IS (1992), 21-34.

3. Boehm, B. W. Software Engineering Economics. Prentice-Hall, Inc., Englewood Cliffs,
NJ, 1981.

4. Boehm, B. W. Improving software productivity. IEEE Computer 21, 5 (September
1987), 43-57.

5. Boehm, B. W. A spiral model of software development and enhancement. IEEE
Computer 21, 5 (May 1988), 61-72.

6. Brooks, F. P. No silver bullet: Essence and accidents of software engineering. IEEE
Computer 20, 4 (April 1987), 10-19.

7. Brown, M. E. An Interactive Environment for Literate Programming. PhD dissertation,
Texas A&M University, College Station, TX, Aug. 1988.

8. Brown, M. E., and Childs, B. An interactive environment for literate programming.
Journal of Structured Programming 11, 1 (1990), 11-25.

9. Buyukisik, 0 . F. Communication on June 1,1993 at 9:49 CDT. Literate Programming
Mailing List, e-mail: a e ll8 1 t(8 s tn fo r.ae.ge.com.

10. Cameron, D., and Rosenblatt, B. Learning GNU Emacs. O’Reilly & Associates, Inc.,
Sebastopol, CA, 1991.

11. Cates, W. M. A Practical Guide to Educational Research. Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1985.

12. Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., and Glaser, R. Self-explanations:
How students study and use examples in learning to solve problems. Cognitive Science
13 (1989), 145-182.

13. Conklin, J. Design rationale and maintainability. Tech. Rep. STP-249-88,
Microelectronics and Computer Technology Corporation, Austin, TX, June 1988.

14. Conklin, J., and Begeman, M. L. gIBIS: a hypertext tool for team design deliberation.
In Hypertext ’87 Papers (New York, NY, 1987), Association for Computing Machinery,
pp. 247-251.

15. Conklin, J., and Begeman, M. L. gIBIS: a hypertext tool for exploratory policy
discussion. Tech. Rep. STP-082-88, Microelectronics and Computer Technology
Corporation, Austin, TX, March 1988.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

99

16. Conover, W. J. Practical Nonparametric Statistics, 2 ed. John Wiley & Sons, Inc., New
York, 1980.

17. Cordes, D., and Brown, M. The literate-programming paradigm. IEEE Computer 2f,
6 (June 1991), 52-61.

18. Denning, P. J., Comer, D. E., Gries, D., Mulder, M. C., Tucker, A., Turner, A. J., and
Young, P. R. Computing as a discipline. Communications of the ACM 32, 1 (January
1989), 9-23.

19. Department of Defense - Ada Joint Program Office. Ada methodologies: Concepts and
requirements. Software Engineering Notes 8 ,1 (January 1983), 33-50.

20. Dyer, J . R. Understanding and Evaluating Educational Research. Addison-Wesley
Publishing Company, Inc., Reading, MA, 1979.

21. Etlinger, H. A., and Lutz, M. J. Professional literacy: Labs for advanced programming
courses. In The Papers o f the Twenty-Fifth SIGCSE Technical Symposium on Computer
Science Education (Mar. 1994), vol. 26, pp. 102-105.

22. Fairley, R. E. Software Engineering Concepts. McGraw-Hill Publishing Company, Inc.,
New York, 1985.

23. Fix, V., Wiedenbeck, S., and Scholtz, J. Mental representations of programs by novices
and experts. In Proceedings INTERCHI ’93 (Human Factors in Computing Systems)
(New York, NY, April 1993), Association for Computing Machinery, pp. 74-79.

24. Henderson-Sellers, B., and Edwards, J. M. The object-oriented systems life cycle.
Communications of the ACM 33, 9 (Sept. 1990), 142-159.

25. Husic, F. T., Linn, M. C., and Sloane, K. D. Adapting instruction to the cognitive
demands of learning to program. Journal of Educational Psychology 81, 4 (1989), 570—
583.

26. Kendall, P. A. Introduction to Systems Analysis and Design: A Structured Approach,
second ed. Wm. C. Brown Publishers, Dubuque, IA, 1989.

27. Knuth, D. E. The WEB system of structured documentation. Stanford Computer Science
Report CS980, Stanford University, Stanford, CA, Sept. 1983.

28. Knuth, D. E. Literate programming. Computer Journal (May 1984), 97-111.

29. Knuth, D. E. TEX: The Program, vol. B of Computers & Typesetting. Addison-Wesley,
Reading, MA, 1986.

30. Koffman, E. B. Pascal: Problem Solving and Program Design, fourth ed. Addison-
Wesley Publishing Company, Inc., Reading, MA, 1992.

31. Kreitzberg, C. B., and Shneiderman, B. The Elements of FORTRAN style: Techniques
for Effective Programming. Harcourt Brace Jovanovich, Inc., New York, 1972.

32. Larkin, T. Communication on July 16, 1993 at 9:05 CDT. Literate Programming
Mailing List, e-mail: ts l l0 c o m e ll .e d u .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

100

33. Lease, M. W., Lively, W. M., and Leggett, J. J. Using an issue-based hypertext system
to capture the software life-cycle process. Hypermedia 2, 1 (1991), 29-46.

34. Linn, M. C., and Clancy, M. J. Can experts’ explanations help students develop
program design skills? International Journal o f Man-Machine Studies 36, 4 (1992),
511-551.

35. Linn, M. C., and Clancy, M. J. The case for case studies of programming problems.
Communications of the ACM 35, 3 (March 1992), 121-132.

36. Linn, M. C., and Clancy, M. J. Designing Pascal Solutions: A Case Study Approach.
W. H. Freeman, New York, 1992.

37. Linn, M. C., and Dalbey, J. Cognitive consequences of programming instruction:
Instruction, access, and ability. Educational Psychologist 20, 4 (1985), 191-206.

38. Linn, M. C., Sloane, K. D., and Clancy, M. J. Ideal and actual outcomes from precollege
pascal instruction. Journal o f Research in Science Teaching 24, 5 (1987), 467-490.

39. Lins, C. A first look at literate programming. Journal of Structured Programming 10,
1 (1989), 60-62.

40. Lins, C. An introduction to literate programming. Journal of Structured Programming
10, 2 (1989), 107-112.

41. Liu, L., and Horowitz, E. Object database support for a software project management
environment. In Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments) (New York, NY,
November 1988), Association for Computing Machinery, pp. 85-96.

42. Maruyama, G., and Deno, S. Research in Educational Settings. SAGE Publications,
Inc., Newbury Park, CA, 1992.

43. Mehringer, V. Communication on April 14,1993 at 17:19 CDT. Literate Programming
Mailing List, e-mail: vincefieye.com.

44. Meister, D. Behavioral Analysis & Measurement Methods. John Wiley & Sons, Inc.,
New York, 1985.

45. Motl, M. B. A Literate Programming Environment Based on an Extensible Editor. PhD
dissertation, Texas A&M University, College Station, TX, December 1990.

46. Nance, D. W. Pascal: Understanding Programming and Problem Solving, third ed.
West Publishing Company, Inc., St. Paul, MN, 1992.

47. O tt, L. An Introduction to Statistical Methods and Data Analysis, 3 ed. PWS-Kent
Publishing Company, Boston, MA, 1988.

48. Pierce, K. R. Rethinking academia’s conventional wisdom. IEEE Software 10,2 (March
1993), 94-95, 99.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

101

49. Pinto, J., and Soloway, E. Providing the requisite knowledge via software
documentation. In Proceedings CHI ’88 (Human Factors in Computing Systems) (new
York, NY, 1988), Association for Computing Machinery, pp. 257-261.

50. Pirolli, P. L., and Anderson, J. R. The role of learning from examples in the acquisition
of recursive programming skills. Canadian Journal of Psychology 39,2 (1985), 240-272.

51. Ramsey, N. Communication on June 28, 1993 at 12:11 CDT. Literate Programming
Mailing List, e-mail: normanQbellcore.com.

52. Ramsey, N. Weaving a language-independent WEB. Communications o f the ACM 32, 9
(Sept. 1989), 1051-1055.

53. Ramsey, N., and Marceau, C. Literate programming on a team project. Software—
Practice and Experience 21, 7 (July 1991), 677-683.

54. Reder, L. M., Charney, D. H., and Morgan, K. I. The role of elaborations in learning
a skill from an instructional text. Memory and Cognition 14 (1986), 64-78.

55. Redmiles, D. F. Reducing the variability of programmers’ performance through
explained examples. In Proceedings INTERCHI ’93 (Human Factors in Computing
Systems) (New York, NY, April 1993), Association for Computing Machinery, pp. 67-
73.

56. Roberge, J., and Suriano, C. Using laboratories to teach software engineering principles
in the introductory computer science curriculum. In The Papers of the Twenty-Fifth
SIGCSE Technical Symposium on Computer Science Education (Mar. 1994), vol. 26,
pp. 106-110.

57. Savitch, W. J. Turbo Pascal. Benjamin/Cummings Publishing Company, Inc.,
Redwood City, CA, 1993.

58. Schank, P. K., Linn, M. C., and Clancy, M. J. Supporting pascal programming with
an on-line template library and case studies. International Journal of Man-Machine
Studies 38, 6 (1993), 1031-1048.

59. Sewell, E. W. Weaving a Program: Literate Programming in WEB. Van Nostrand
Reinhold, New York, 1989.

60. Shelly, G. B., and Cashman, T. J. Business Systems Analysis and Design. Anaheim
Publishing Company, Fullerton, CA, 1975.

61. Shum, S., and Cook, C. Using literate programming to teach good programming
practices. In The Papers of the Twenty-Fifth SIGCSE Technical Symposium on
Computer Science Education (Mar. 1994), vol. 26, pp. 66-70.

62. Smith, L. M. C. Measuring complexity and stability of web programs. Master’s thesis,
Oklahoma State University, Stillwater, OK, December 1990.

63. Smith, L. M. C., and Samadzadeh, M. H. Measuring complexity and stability of web
programs. Structured Programming 13 (1992), 35-50.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

102

64. Soloway, E. Learning to program = learning to construct mechanisms and explanations.
Communications of the ACM 29, 9 (September 1986), 850-858.

65. Soloway, E. Should we teach students to program? Communications o f the ACM 36,
10 (October 1993), 21-24.

66. Soloway, E., and Ehrlich, K. Empirical studies of programming knowledge. IEEE
Transactions on Software Engineering SE-10, 5 (September 1984), 595-609.

67. Soloway, E., Ehrlich, K., Bonar, J., and Greenspan, J. What do novices know about
programming? In Directions in Human-Computer Interaction, B. Shneiderman and
A. Badre, Eds. Ablex Publishing Corp., Norwood, NJ, 1982, pp. 27-54.

68. Soloway, E., Pinto, J., Letovsky, S., Littman, D., and Lampert, R. Designing
documentation to compensate for delocalized plans. Communications o f the ACM 31,
11 (November 1988), 1259-1267.

69. Spohrer, J. C., and Soloway, E. Novice mistakes: Are the folk wisdoms correct?
Communications of the ACM 29, 7 (July 1986), 624-632.

70. Sylvan, K. Communication on April 14, 1993 at 5:36 CDT. Literate Programming
Mailing List, e-mail: kayvanfisatyr.Sylvsm.COM.

71. Sylvan, K. Communication on June 5, 1993 at 2:11 CDT. Literate Programming
Mailing List, e-mail: kayvanfisatyr.Sylvan.COM.

72. Texas A&M University - Undergraduate Catalog, 1993-1994. No. 116.

73. Thimbleby, H. Experiences of ‘literate programming’ using cweb (a variant of Knuth’s
WEB). The Computer Journal 29, 3 (June 1986), 201-211.

74. Tucker, A. B., Ed. Computing Curricula 1991 - Report of the ACM/IEE-CS Joint
Curriculum Task Force (New York, NY, December 1990), Association for Computing
Machinery.

75. Tucker, A. B., and Wegner, P. New directions in the introductory computer science
curriculum. In The Papers o f the Twenty-Fifth SIGCSE Technical Symposium on
Computer Science Education (Mar. 1994), vol. 26, pp. 11-15.

76. van Ammers, E. W. Communication on July 16, 1993 at 7:05 CDT. Literate
Programming Mailing List, e-mail: ammersfircl.wau.nl.

77. Wagner, Z. Communication on July 16, 1993 at 3:00 CDT. Literate Programming
Mailing List, e-mail: WAGNER7.CSEARN.BITNETfiSHSU.edu.

78. Williams, R. N. Funnelweb User’s Manual. anonymous FTP at
s i r iu s . i td .a d e la id e .e d u .a u ,May 1992. V1.0 for FunnelWeb V3.0.

79. Wirth, N. Systematic Programming: An Introduction. Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1973.

80. Wittenberg, L. Communication on July 18,1993 at 13:37 CDT. Literate Programming
Mailing List, e-mail: lee w fip ilo t.n jin .n e t.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

103

APPENDIX A

COURSE MATERIALS

This appendix consists of materials that were distributed to the participants enrolled

in the test study. The first 4 pages are information on how the students were graded and

what was expected from each of their lab assignments. The students enrolled in the

comparison classes received similar guidelines.

The next 3 pages are samples of the grading sheets for the lab assignments. The

tentative class schedule is included and consists of a list of the textbook chapters for

which each student was responsible, test dates, and the due dates for lab assignments.

The pre-test which was given to the test study participants appears next, followed by

the GNU Emacs Reference Card.

The next document (5 pages) is the WEB User Manual Exerpt which was distributed to

the test study participants.

The students’ first lab assignment was to type in the quadratic equation problem,

which appears next. It is immediately followed by a TANGLEd and a WEAVEd version of the

program (10 pages total).

The next three documents are T^X samples which were distributed to the students

during the lab period (9 pages total).

The remainder of the appendix consists of all lab assignments (6 pages) and the exams

which were given during the course (43 pages).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

104

CPSC non
PROGRAMMING I

Ms. Dyrum
311U II. R. Bright

Office Phone: 845-5787

Prerequisite: High School Algebra
Office Hours: 4:00-5:00 MTWIt

Others by appointment

REQUIRED TEXTS: Nance, Douglas W., Pascal: Understanding Programmming and Problem
Solving, Third Edition, West Publishing Company, 1992.

OPTIONAL TEXT: Nance, Douglas W., Student Solutions Manual to Accompany Pascal: Un­
derstanding Programming and Problem Solving, Second Alternate Edition,
West Publishing Company, 1992.

EXAMINATIONS: (60% of the course grade)

3 Class Examinations 12% each
Final Examination-Comprehensive 24%

T entative Exam Schedule:

Exam 1 Friday, September 24
Exam 2 Friday, October 22
Exam 3 Friday, November 19
Final Tuesday, December 14, 10:30 a.m. -12:30 p.m.

N O TE : There are no exemptions for the final examination. Check the final exam
time. If the final exam time is a problem, you need to drop this course.

ASSIGNMENTS: (40% of the course grade)

30% programming/homework assignments
10% class participation/short, unscheduled quizzes

GRADING POLICY: Final grades will be assigned as follows:

90 - 100 A
80 - 89 B
70 - 79 C
60 -69 D
below 60 F

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

105

CLASS INFORMATION AND POLICIES
Department of Computer Science, IIRUB 31 ID, 845-5787

ATTENDANCE: Attendance will be taken each day in class. Attendance will not be used in
calculating your filial grade; however, class participation is a portion of your
final grade. If you are absent from class please do not come by my office and
ask me to repeat the class lecture. There will be no smoking, no chewing of
tobacco, no bare feel, and no wearing of hats during class.

EXAMINATION POLICY: All class examinations are considered to be a major part of the course work
upon which a large part of the course grade depends. There are NO make­
up exams! Class examinations will be announced at least two classes prior
to the examination. If you have a conflict with another university event, you
must contact ine well in advance of the examination. In case of an extreme
emergency, contact me before the scheduled examination. Failure to do so
will result in an examination grade of zero.

ASSIGNMENT POLICY: AU assignments are due as specified by the lab assistant. Any assignment
turned in after the assignments have been collected from the class is con­
sidered late. Late fats will be penalized 10% fo r each calendar day late,
beginning with the day on which the lab is due. Under NO circumstances
will any assignment be accepted for credit after the collected class assign­
ments have been graded, if you are unable to turn in a lab during class time
and are unable to find me or the lab assistant, place it under my door or
under your lab assistant’s door.

IM PO R TA N T: Every programming assignment M U ST be turned in. Failure to turn in a
programming assignment may result in the reduction of one (1) letter grade
from the final course grade.

CHEATING POLICY: If in my judgement a student is found cheating on an examination, a grade
of zero will be assigned as the examination grade and a minimum of one
(1) letter grade will be lost in the course grade. A course grade of F may
be assigned depending on the situation. A student found cheating on an
examination may not drop the course.

All other class assignments are to be done IN D E PE N D E N T L Y . Discus­
sion is encouraged, but you are to do your own work. If in my judgement
two or more people hand in assignments that I judge to be the same, a grade
of zero will be awarded to all involved assignments and a minimum of one
letter grade may be lost in the course grade. A recurrence of this by any
individual will result in a grade of F in the course. Students should save all
developmental copies of their programs so that individual program develop­
ment can be verified to me if I think it is necessary. DO Y O U R OW N
W ORKH I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

106

CPSC 110
Fall 1993

Laboratory Information
Lab Assistant: Peter Nuernberg
Lab Hours: TR 2:00 - 4:50
Oftice: HRBB 414B (inside the Hypermedia Research Laboratory)
Office Hours: MWF 1:45 - 2:45
Office Phone: 845-9980

Supplies Needed: at least two 31/2‘ floppy diskettes.

Laboratory Guidelines:

For e a c h lab, turn in both a d isk with all sou rce files, AND a printout of the
WEAVE'd and TgX'd WEB file.

Grade Breakdown:

I. Initial Design - 50 points
The initial design should address, at a minimum, the following points:

A. Problem Statement
B. Inputs Required
C. Outputs Generated
D. Processing Required
E. Algorithm Development
F. Testing

The design will be produced by WEAVE'ing and T^Cing the WEB source. Turn
in only the printout during this phase. Spelling, grammar, style, etc. are
important and will be factored into your grade.

II. Final Lab - 100 points

A. Documentation / Design - 50 points

This part of your final lab is a corrected and updated version of your initial
design. It should address the same points as your initial design. Also
included in your grade is the degree of correlation between your
documentation and your implementation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

107

There are a few things I'd like to point out specifically about documentation:

1) You will be implementing some complex concepts in your programming
assignments, so I expect your programs to be well-documented. There
are two levels of documentation:

• chapter / section level - at this level, you are to give a general
description of what the chapter/section is intended to do. Note that
the program description is accompanied by your Name, Class, etc.
Some modules implement rather complex algorithms, so their
descriptions are more detailed than the others. Other modules might
make important assumptions that should be mentioned.

• code level - at this level, you are to explain what the program is doing
a t that particular moment. This kind of comment is much more
specific than the chapter/section description. If possible, make sure
your comments don't "wander* all over the page.

2) Your should give your identifiers meaningful names.

3) You should minimize the use of global variables. Any data item used in
a module should be passed as a parameter or declared locally.

B. Implementation - SO points

Implementation generally refers to how well your program solves the given
problem. It is assumed that your program runs - in fact, you automatically
lose SO% if your program doesn't compile! This portion will cover any errors
that exist in the compiled program. Failure to follow instructions will be
reflected here.

A few words on cheating:

Don’t do it.

Please read the section entitled Scholastic Dishonesty in the University Regulations
if you are unsure what constitutes cheating. Tliis section also details the disciplinary
action which can be taken in scholastic dishonesty cases. These actions include
grade penalty, probation, suspension, dismissal, and/or expulsion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

108

CPSC 110 - Lab 1 Grade Sheet
Name:_____________________

.WEB file: /45 .TEX file /2Q .DVI file ... /10

Total: — /1QQ__

.PAS tile /1S .EXE file .. . n o ...

CPSC 110 - Lab 1 Grade Sheet
Name:_____________________

vvr-n iiih /*in ■ i ta him

.PAS file /1S EXE file
. J.U L

. /1Q...

Total: /100...

CPSC 110 - Lab 1 Grade Sheet
Name:

•WEB file: /4S .TEX file 120 .DVI file OQ.
.PAS file

Total: ./1QQ

/15 .EXE file /10

CPSC 110 - Lab 1 Grade Sheet
Name:

W EB file: /45 TFX file 190 .DVI file /m
.PAS file / is .EXE file /10

Total: . _ /1Q0 ..

CPSC 110 - Lab 1 Grade Sheet
Name:

W EB file: /45 TFX file /?n .DVI file /m
.PAS file / i s .EXE file /m

Total: ..._. /1QQ

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

109

CPSC 110 - Initial Design Grade Sheet

Name:--
Lab:_______________

Problem Statement

Inputs Required

Outputs Generated

Processing Required

Algorithm Development

Testing

Writing Competence

Document Design

Other

Total grade:_______ 150.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

110

CPGC 110 - Lab Grade Sheet

Name:____________________
Lab:_______________ Total grade:_______ I1QH

Problem Statement Compilation Errors

Inputs Required

Run-time Errors

Outputs Generated

Processing Required
Logical Errors

Algorithm Development

Testing
Document/Program Correspondence

Writing Competence

Elegance

Document Design

Other Other

D esign G ra d e : /SO Implementation Grade: /SO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10
/2

9
C

ho
pt

«r

11

www.manaraa.com

112

September 6, 1993 Name

CPSC 11011 Mrs. Dunn

PreTest
1. W hat computer science courses have you taken? Give a description of any courses taken in

high school and/or college(s).

2. What computer languages do you know?
* The languages I can program in without a reference manual.

* The languages I can program in with the help of the reference manual.

* I have previously programmed in these languages but would require some review and
the use of a manual.

3. What experience do you have with emacs (prior to September 1)?

4. What experience do you have as a professional programmer? Give language and type of
work.

5. What experience do you have with literate programming?

Classification Major

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

113

September 6, 1993 Name---

The purpose of this test is a preliminary evaluation of your problem-solving skills. State the
steps necessary to solve this problem. Give detailed answers in complete English sentences and
paragraphs.

You are the manager of Aggie Lawn Service. Alvin is your new employee. You must explain
to Alvin the process of calculating an estimate for a potential customer. (Of course, in the future
this may use a hand-held computer.) The <|uote will include a cost statement and estimated time
to complete the job.

This estimate is based upon the area of the lawn and a standard (confidental) charge per
square foot. Grass can be cut at the rate of 2 square feet per second. You may assume that a
rectangular house is situated in a rectangular yard. Give the details of the process and itemize
all assumptions you have made.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

G N U Em acs R eference Card
(lor versiou 18). sab ^sA a

S tartin g Em acs
To enter Emacs, ju s t type its u m e : s u e s

To rood in a file to ed it, oee File*, below.

Leaving E m acs
su sp en d E m acs (th e u su a l way o f leav ing i t) C -x
e x it F m ar* p e rm a n e n tly C-x C-c

Files
r o a d a file in to C -x C -f
s a v e a file back to d isk C -s C-a
i n s e r t con ten te o f a n o th e r file in to tb i* buffer C-x i
rep lace th is file w ith th e file you rea lly w ant C -x C -s
w rite buffer to a specified file C -x C -s
ru n D ired . th e d irecto ry e d ito r C-x d

G etting H elp
T h e H elp sy stem is s im ple T y p e C-fc a n d follow th e d irec tions.
If you a re a f irs t- tim e user, ty p e C-h x for a t u t o r i a l . (T h is
c a rd a a ru m n yo u know th e tu to r ia l .)
get r id o f H elp w indow C-x 1
scroll H elp w indow CSC C-i»

ap ro p o s: show co m m an d s m atc h in g a s tr in g C -h a
show th e fu n c tio n a key ru n s C-b c
describe a fu n c tio n C -b 1
g e l m ode-specific in fo rm a tio n C -b ■

E rro r Recovery
a b o r t p a rtia lly ty p e d o r ex ecu tin g co m m an d C-g
r e c o v e r a file lo s t by a sy stem a u a h R-x x a e e v a r - f i l s
u n d o a n u n w an ted change C-x a o r C-_
resto re a buffer to i t s o rig ina l c o n te n ts H-x r s v s r t - b v f f e r
red raw g a rb ag ed screen C - l

In crem en ta l Search
search forw ard C -s
search backw ard C -r
reg u la r o .p n ta a iu a search C -H -s

Use C -a o r C -r ag a in to r e p e a l th e search in c i th e r d irec tio n .

e x it in crem enta l search ESC
u n d o effect o f la s t c h a ra c te r DEL
a b o rt c u rre n t search C-g

If E m acs is s till search in g . C -g will can ce l th e p a r t o f th e search
n o t d one , o therw ise i t a b o r ts th e e n tire search .

(D 1**T F m S s f tw i r t F s a a S s tw s . I s c . P t m i M t t n t * b sck - v l . f

M otion M ultip le W indow s
C u rso r m otion :

e n t i t y t o m o v e o v e r b a c k w a r d f o rw a rd
c h a ra c te r C-b C -f
w ord H-b H -f
lin e C-p C-»
go to line beg in n in g (o r e n d) C -a C -s
sen ten ce H-a H-a
p a ra g ra p h H -[H-J
p sg e C-x t C-x]
sex p C-H-b C -H -f
fu n ctio n C-H-a C-H-a
go to buffer beg in n in g (o r end)

S creen m otion :

R-< H->

e o o li to n e x t a o e e n C-v
scro ll to p rev io u s screen H-»
scroll left C-x <
scro ll righ t C-x >

K illing and D eleting
e n t i t y t o k ill b a c k w a r d f o rw a rd
c h a ra c te r (d ele te , n o t kill) DEL C-d
word H-DEL R-d
line (to en d o f) H-0 C-k C-k
sen ten ce C-x DO. H-k
sexp H— C-H-k C-H-k
kill r e g io n c -»
kill to n e x t o ccu rren ce of ckse H-x char

yan k b ack las t th in g lulled c-y
rep la c e last yank w ith p rev io u s kill

M arking
se t m a rk here C-4 o r C-SPC
ex ch an g e p o in t a n d m ark C-x C-x
se t m a rk •»y w o rd * away H -t
m ark p a r a g r a p h H-b
m ark p a g e C-x C-p
m ark s e x p C-H«•f
m a rk f u n c t io n C-H’•b
m ark e n tire b u f fe r C-x b

Q uery R eplace
in te rac tiv e ly rep lace a t e x t s tr in g H-X
u sin g reg u la r e xpressions H*■x q s a ry - r a p la c a -x s g a x]

Valid resp o n ses in q u ery -rep lace m o d e a re

r e p l a c e th is o ne. go o n to n e x t SPC
rep lace th is o ne, d o n 't m ove ,
s k ip to n e x t w ith o u t rep lac in g DEL
rep lace a ll rem a in in g m atch es !
b a c k u p to th e p rev io u s m a tc h *
e x i t query -rep lace ESC
e n te r recu rs iv e e d it (C-H-e to e x it) C -r

d e le te all o th e r w indows
d e le te th is window
s p li t w indow in 2 vertica lly
s p li t window in 2 horizo n tally

sc ro ll o th e r w indow
sw itc h cu rso r to a n o th e r window

sh rin k window sh o rte r
g row w indow u l lc r
sh r in k w indow n arrow er
gro w w indow wider

s e le c t a bu ffer in o th e r w indow
fin d file in o th e r window
c o m p o se m ail in o th e r w indow
r u n D ired in o th e r w indow
fin d ta g in o th e r w indow

F o rm a ttin g
in d e n t cufTent l in e (m o d e -d ep m d e n t)
in d e n t r e g io n (m o d e-d ep en d en t)
in d e n t s e x p (m o d e-d ep en d en t)
in d e n t reg io n rig id ly «ty en lw tm a

in s e r t new line a f te r p o in t
m o v e re s t o f line ve rtica lly dow n
d e le te b lan k lines a ro u n d poin t
d e le te all w hitespace a ro u n d p o in t
p u t ex a c tly one space a t p o in t

fill p a r a g r a p h
fill rw g ion
se t fill co lum n
s e t prefix each lin e s ta r ts w ith

C ase C hange
u p p e rc a s e w ord
low ercase word
c a p ita lis e word

u p p e rc a se region
low ercase region
c a p ita lis e reg ion ft-

T h e Minibuflfer

C -x i
C -x 0
C -x 7
C - s s

C -fi-v
C -x •

i a h r i i k - v l a d o s
C -x *
C -x <
C -x }

C -x 4 b
C -x 4 f
C -x 4 s
C -x 4 d
C -x 4 .

TAB
C -H -\
C -H -q
C -x TAB

C -o
C -B -o
C -x C-©
H - \
R-SPC

H-q
«-«
C -x f
C -x .

H-l
H-c

C -x C-o
C -x C - l

: c a p i t a l i x a - r a g i a a

T he follow ing keys are defined in the minibuffer.
c o m p le te a s m uch a s p o ssib le TAB
c o m p le te u p to one w ord SPC
c o m p le te a n d ex ecu te BET
sh o w possib le com pletion* ?
A bort co m m an d C -g
T y p e C-x ESC to e d it a n d r e p e a t th e la s t c o m m a n d t h a t used
th e minibuffer. The following keys are then defined.
p rev io u s m in ibuffe r co m m an d B -p
n e x t m in ib u ffer co m m an d H-x

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

GNU Emacs Reference Card
i r t n t i version

Buffers
■elect a n o th e r buffer C-x b
Lrsl all buffers C-x C-b
kill « buffer C-x k

T ransposing
tra n ip o M c h a r a c te r * C -t
tn a f p o M w o rd * H -t
tra n sp o se l in e * C-x C -t
tra n sp o se • e x p * C-H -t

Spelling Check
check sp e llin g o f c u rre n t w ord R - l
check spe lling of a ll word* in reg ion H-x s p e l l - r s g io B
check spe lling of e n tire buffer R-x s p e l l - h u f f e r

R eg u lar E xpressions
T h e follow ing h av e sp ecia l m ean in g inside a reg u la r expression .

an y s ing le c h a ra c te r (d o t)
t e e o r m o re re p e a ts *
on* o r m o re rep ea l* *
ae ro o r one rep e a t ?
an y c h a ra c te r in act I . . . 3
a n y c h a ra c te r n o t in act [* . . . 3
b e g in n in g o f line
en d o f lin e •
q u o te a specie) c h a ra c te r e \ e
a lte rn a tiv e (‘o r ") \ l
g ro u p in g \ (. . . \)
• t h g ro u p
beg in n in g o f b u ffer \ '
e n d o f b u ffer \ *
w ord b reak \ b
n o t b e g in n in g o r e n d o f word \B
beg in n in g o f w ord \<
e n d o f w ord \>
a n y w o rd -sy n tax c h a ra c te r *
a n y n o o -w o rd -ty n ta x c h a ra c te r W
c h a ra c te r w ith s y n ta x c \ s c
c h a ra c te r w ith sy n ta x n o t r \S c

Registers
copy reg ion to reg is te r C -x x
in se r t re g is te r c o n te n ts C -x g

save p o in t in reg is te r C-x /
m ove p o in t to saved loca tion C-x j

M ode - w eb-m ode
N aviga tion in esb-w od*

g o to aectioo nam ed (co m p letio n)
g o to sectio n #
n e x t section
p rev io u s section
w hich section
g o to c h a p te r #
n ex t ch a p te r
p rev io u s c h ap te r
w hich ch ap te r
view index
n e x t index
p rev io u s index
view sectio n n am es list
n e x t define
n e x t use
p rev io u s define
p rev io u s use

O u tlin e ed itin g
h id e body
show all
n e x t v isible head ing
p rev io u s visible head in g
forw ard sam e level
b ackw ard tam e level
u p head in g
h ide th is en try
show th is en try
h id e su b tre e
■how su b tree
show children
h id e leaves
show bran ch es

M iscellaneous
ren am e section
in se r t index en try
view c h a p te r t it le s list
view e d ite d sectio n s # *
which e d ite d section
co u n t e d ite d sections
co u n t sections
co u n t ch ap te rs
d e lim ite r m a tc h check
k ill em acs from e sb -a o d o

C hang ing b u f fo s in o eb -ao d e
g o to buffer, change file
g o to buffer, include file
g o to buffe r, web file

C h an g e file com m ands

e d it section
g o to e d ite d section #
n e x t e d ite d section
previous edited section

K ey b o ard M acros

C -c
C -c
C -e
C -c
C -c
C -c
C-C
C -e
C -c
C -c
C -c
C -e

C -e
C -c
C -c
C -c
C-c

C -c
C -e
C -c
C -c
C -c
c - e
C-c
C-c
C -c
C -c
C -c
C -e
C -c
C-c

C-c
C-e
C-c
C-c
C -c
C-c
C-c
C -c

C-c
C -x C-

C -e b
C -c b
C -c b

C-c i
C -c g
C-e
C - e P

s t a r t d efin in g a k e y b o a rd m a c ro
a n d k e y b o a rd m ac ro d efin itio n
e x e c u t e las t-d e fin ed k e y b o a rd m ac ro
a p p e n d to l a s t k e y b o a rd m *m >
n a m e la s t k e y b o a rd m ac ro R-x
in se r t l isp d e fin itio n in buffer R -x i n s e r t - h b d ra a c ro

Com m ands Dealing w ith E m acs Lisp
eval s e x p b efo re p o in t
eval cu r re n t d e f u n
eval r e g io n
eval e n tire b u f f e r
r e a d a n d ev a l m in i buffer

C - s C -s
C -R -x

R -x w v a l - r s g i s a
R -x o v a l - c u r r e n t - h u f f e r

H-ESC
C -x CSC

R -x l o a d - f i l s
H-x l * t d * l i b r u 7

re-ex ecu te l a s t m in ib u ffe r c o m m a n d
r e a d a n d eval E m acs L isp file
lo ad f ro m s ta n d a rd s y s te m directory*

Sim ple C u stom iza tion
H ere a re so m e e x a m p le s o f b in d in g g lo b a l k ey s i s E m a cs L isp .
N o te th a t y o u c a n n o t aay y o u m u s t s a y " \ e * “ .

(g lo b a l - s e t - k e y **\C-cg" » g o t o - l in s)
I g lo b a l - s s t - k o y " \« \ C - r " »is a a r c h - b a c h a a x d -x o g sxp)
(g lo fe a l - a e t -k o y " \ * t " 'q u o ry - r o p la e o - ro g o x p)

A n e x am p le of s e tt in g a v a riab le in E m a cs L isp :

(s s tq backup-by-copy ing-ubss-linksd t)

W riting C om m ands
(d i i s s (co m m an d -n am e) ((a rg s))

" (d o c u m e n ta tio n)"
(i n t e r a c t i v e "(tem plate)**)
(b o d y))

A n ex am p le :

(d t f u th i s - l in e - to - to p - o f - s c r o e n (l i a s)
"R ep o s itio n l i n e p o in t i s on to th e to p o f

th e s c re e n . V itb IRC, p n t p o in t on l i n e IRC.
l e g a t ie e coun ts f r o a bottea.**

(in t e r a c t iv e "P")
(re c a n te r (I f (n u l l l i n e)

0
(p r o f i r - n » * r i c - v a l a e l i n e))))

T h e a rg u m e n t to i n t e r a c t i v e is a s tr in g s p ec ify in g bow to get
th e a rg u m e n ts w hen th e fu n c tio n is c a lled in te rac tiv e ly . T y p e
C -h f i n t e r a e t l v o fo r m o re in fo rm a tio n .

C*pyri|ki © 1**7 Frvc Softwsr* Fossdftttos. lec.
d«*iga«d by S ttpb tn GUtftk. U tr tb 1SST *1.1
tor CKU Case* voraios IS os Usi* t y i x a t

ParmiMM* ia | i u i« d to ask * as* d u ir ib iu cop*** of (hi* cart prw
vtd*d th* copyright i h k i sod iku p t r a o iw i ootic* or* prv#*rv#d os
sU copwa.
For copMa o! th* GNU E a se * n o s e s ! , w rit* io lb* F»*v Seftw si* Fees*

lac.. STS UumcIiuii. An. CuBbiirf|*UA 09130.

www.manaraa.com

116

VEB USER MANUAL 1
This memo describes how to write programs in the WEB language; and it also includes the full VEB docu­
mentation for VEAVE and TAIGLE, the programs that read VEB input and produce TfeX and Pascal output,
respectively. The philosophy behind VEB is that an experienced system programmer, who wants to provide
the best possible documentation of his or her software products, needs two things simultaneously: a language
like for formatting, and a language like Pascal for programming. Neither type of language can provide
the best documentation by itself; but when both are appropriately combined, we obtain a system that is
much more useful than either language separately.

The structure of a software program may be thought of as a ‘‘web” that is made up of many interconnected
pieces. To document such a program, we want to explain each individual part of the web and how it relates to
its neighbors. The typographic tools provided by TfeX give us an opportunity to explain the local structure of
each part by making that structure visible, and the programming tools provided by Pascal make it possible
for us to specify the algorithms formally and unambiguously. By combining the two, we can develop a style
of programming that maximises our ability to perceive the structure of a complex piece of software, and
at the same time the documented programs can be mechanically translated into a working software system
that matches the documentation.

General rules. A VEB file is a long string of text that has been divided into individual lines. The exact
line boundaries are not terribly crucial, and a programmer can pretty much chop up the VEB file in whatever
way seems to look best as the file is being edited; but string constants and control texts must end on the
same line on which they begin, since this convention helps to keep errors from propagating. The end of a
line means the same thing as a blank space.

Two kinds of material go into VEB files: T^X text and Pascal text. A programmer writing in VEB should be
thinking both of the documentation and of the Pascal program that he or she is creating; i.e., the programmer
should be instinctively aware of the different actions that VE1VE and TAIGLE will perform on the VEB file.

text is essentially copied without change by VEAVB, and it is entirely deleted by TAIGLE, since the 1)qX
text is “pure documentation.” Pascal text, on the other hand, is formatted by VEAVE and it is shuffled around
by TAIGLE, according to rules that will become clear later. For now the important point to keep in mind is
that there are two kinds of text. Writing VEB programs is something like writing documents, but with
an additional “Pascal mode” that is added to TfcX’s horisontal mode, vertical mode, and math mode.

A VEB file is built up from units called modulea that are more or less self-contained. Each module has
three parts:

1) A Tĵ X part, containing explanatory material about what is going on in the module.

2) A definition part, containing macro definitions that serve as abbreviations for Pascal constructions that
would be less comprehensible if written out in full each time.

3) A Pascal part, containing a piece of the program that TAIGLB will produce. This Pascal code should ideally
be about a dozen lines long, so that it is easily comprehensible as a unit and so that its structure
is readily perceived.

The three parts of each module must appear in this order; i.e., the T£X commentary must come first, then
the definitions, and finally the Pascal code. Any of the parts may be empty.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2 VEB USER MANUAL

A module begin* with the pair of symbols ‘By’ or ‘A*’, where V denotes a blank space. A module ends at
the beginning of the next module (i.e., at the next ‘flu’ or ‘8*’), or at the end of the file, whichever comes
first. The VEB file may also contain material that is not part of any module at all, namely the text (if any)
that occurs before the first m<>dule. Such text is said to be “in limbo”; it is ignored by TAIGLE and copied
essentially verbatim by VEAVE, so its function is to provide any additional formatting instructions that may
be desired in the T^X output. Indeed, it is customary to begin a VEB file with TfcX code in limbo that loads
special fonts, defines special macros, changes the page sizes, and/or produces a title page.
Modules are numbered consecutively, starting with 1; these numbers appear at the beginning of each

module of the TjjjX documentation, and they appear as bracketed comments at the beginning of the code
generated by that module in the Pascal program.
Fortunately, you never mention these numbers yourself when you are writing in VEB. You just say ‘fiu’

or ‘6*’ at the beginning of each new module, and the numbers are supplied automatically by VEAVE and
TAIGLE. As far as you are concerned, a module has a name instead of a number; such a name is specified by
writing '•<’ followed by TfcX text followed by *•>’. When VEAVE outputs a module name, it replaces the '•<’
and '•>' by angle brackets and inserts the module number in small type. Thus, when you read the output
of VEAVE it is easy to locate any module that is referred to in another module.
For expository purposes, a module name should be a good description of tbe contents of that module, i.e.,

it should stand for the abstraction represented by tbe module; then the module can be “plugged into” one
or more other modules so that the unimportant details of its inner workings are suppressed. A module name
therefore ought to be long enough to convey the necessary meaning.
We have said that a module begins with ‘flu’ or ‘fl*\ but we didn’t say how it gets divided up into a TfcX

part, a definition part, and a Pascal part. The definition part begins with the first appearance of ‘fld’ or ‘ti’
in the module, and the Pascal part begins with the first appearance of ‘flp’ or *fl<’. The latter option '*<’
stands for the beginning of a module name, which is the name of tbe module itself. An equals sign (=) must
follow the ‘fl>’ at the end of this module name; you are saying, in effect, that the module name stands for the
Pascal text that follows, so you say ‘(module name) = Pascal text’. Alternatively, if the Pascal part begins
with ‘flp’ instead of a module name, the current module is said to be unnamed. Note that module names
cannot appear in the definition part of a module, because the first *•<’ in a module signals the beginning of
its Pascal part. Any number of module names migbt appear in the Pascal part, however, once it has started.
The general idea of TAIGLE is to make a Pascal program out of these modules in the following way: First

all the Pascal parts of unnamed modules are copied down, in order; this constitutes the initial approximation
To to the text of the program. (There should be at least one unnamed module, otherwise there will be no
program.) Then all module names that appear in tbe initial text To are replaced by the Pascal parts of
the corresponding modules, and this substitution process continues until no module names remain. Then
all defined macros are replaced by their equivalents, according to certain rules that are explained later. The
resulting Pascal code is “sanitized” so that it will be acceptable to an average garden-variety Pascal compiler;
i.e., lowercase letters are converted to uppercase, long identifiers are chopped, and the lines of tbe output
file are constrained to be at most 72 characters long. All comments will have been removed from this Pascal
program except for the module-number comments that point to the source location where each piece of the
program text originated in the VEB file.
If the same name has been given to more than one module, the Pascal text for that name is obtained by

putting together all of the Pascal parts in the corresponding modules. This feature is useful, for example, in
a module named ‘Global variables in the outer block’, since one can then declare global variables in whatever
modules those variables are introduced. When several modules have the same name, WEAVE assigns the first
module number as the number corresponding to that name, and it inserts a note at the bottom of that
module telling the reader to ‘See also sections so-and-so’; this footnote gives the numbers of all the other
modules having the same name as the present one. The Pascal text corresponding to a module is usually
formatted by VEAVE so that tbe output has an equivalence sign in place of the equals sign in the VEB file;
i.e., the output says ‘(module name) = Pascal text’. However, in the case of the second and subsequent
appearances of a module with the same name, this *=’ sign is replaced by *+=’, as an indication that the
Pascal text that follows is being appended to the Pascal text of another module.
The general idea of VEAVE is to make a TEX file from the VEB file in the following way: The first line of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

118

TEZ file will be ‘\input ■ abase’; this will cause T£X to read in tbe macros that define VEB'a documentation
conventions. The next lines of the file will be copied from whatever TgX text is in limbo before the first
module. Then comes the output for each module in turn, possibly interspersed with end-of-page marks.
Finally, VEAVE will generate a cross-reference index that lists each module number in which each Pascal
identifier appears, and it will also generate an alphabetized list of the module names, as well as a table of
contents that shows the page and module numbers for each ‘‘starred” module.
What is a “starred" module, you ask? A module that begins with ‘8*’ instead of ‘8U’ is slightly special

in that it denotes a new major group of modules. Tbe ‘8*’ should be followed by the title of this group,
followed by a period. Such modules will always start on a new page in the TfcX output, and the group title
will appear as a running headline on all subsequent pages until the next starred module. The title will also
appear in the table of contents, and in boldface type at tbe beginning of its module. Caution: Do not use
T£X control sequences in 6uch titles, unless you know that tbe asbaac macros will do the right thing with
them. The reason is that these titles are converted to uppercase when they appear as running heads, and
they are converted to boldface when they appear at tbe beginning of their modules, and they are also written
out to a table-of-contents file used for temporary storage while T^X is working; whatever control sequences
you use must be meaningful in all three of these modes.

Control codes. We have seen several magic uses of '8' signs in WEB files, and it is time to make a systematic
study of these special features. A WEB controf code is a two-character combination of which the first is ‘8’.
Here is a complete list of the legal control codes. The letters L , T , P , M , C , and/or 5 following each

code indicate whether or not that code is allowable in limbo, in TfcX text, in Pascal text, in module names,
in comments, and/or in strings. A bar over such a letter means that the control code terminates the present
part of the VEB file; for example, L means that this control code ends the limbo material before the first
module.
88 [C, L , Af, P ,S ,T \ A double 8 denotes the single

character ‘8’. This is the only control code
that is legal in limbo, in comments, and in
strings.

8U (I, P , T] This denotes the beginning of a new
(unstarred) module (or section). A tab mark
or end-of-line (carriage return) is equivalent to
a space when it follows an 8 sign.

8* (I, P ,T \ This denotes the beginning of a new
starred module, i.e., a module that begins a
new major group (or chapter). The title of
the new group should appear after the 8*,
followed by a period. As explained above,
TfcX control sequences should be avoided
in such titles unless they are quite simple.
When VEAVE and TAIGLE read a 8«, they
print an asterisk followed by the current
module number, so that the user can see some
indication of progress. The very first module
should be starred.

8p (P , 7̂ Tbe Pascal part of an unnamed module
begins with 8p (or 8P). This causes TAIGLE
to append the following Pascal code to the
initial program text To as explained above.
The VEAVE processor does not cause a ‘8p’ to
appear explicitly in the TfeX output, so if you

are creating a VEB file based on a TfeX-printed
VEB documentation you have to remember
to insert 8p in the appropriate places of the
unnamed modules.

module name begins with 8< followed
by T£X text followed by 8>; the Tĵ X text
should not contain any VEB control sequences
except 88, unless these control sequences
appear in Pascal text that is delimited
by I... |. Tbe module name may be
abbreviated, after its first appearance in a VEB
file, by giving any unique prefix followed by
..., where the three dots immediately precede
the dosing 8>. No module name should be
a prefix of another. Module names may not
appear in Pascal text that is enclosed in
I... I, nor may they appear in the definition
part of a module (since the appearance of a
module name ends the definition part and
begins the Pascal part).

8* [P ,T] The “control text” that follows, up to
the next 'S>>, will be entered into the index
together with the identifiers of the Pascal
program; this text will appear in roman
type. For example, to put the phrase “system
dependencies” into tbe index, you can type

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

119

‘0 ‘ s f s t e n d»pond*nci«sO>’ in each module
that you want to index as system dependent.
A control text, like a string, must end on
the same line of the VEB file ss it began.
Furthermore, no VEB control sequences are
allowed in a control text, not even BB. (If
you need an • sign you can get around this
restriction by typing *\AT! ’.)

B. [P ,T \ The “control text" that follows will be
entered into the index in typsvritsr typs;
see the rules for which is analogous.

• : [P,T] The “control text” that follows will be
entered into the index in a format controlled
by the T£X macro ‘\B’, which the user should
define as desired; see the rules for ‘I*’, which
is analogous.

C! (P, T] The module number in an index entry
will be underlined if *•!’ immediately precedes
tbe identifier or control text being indexed.
This convention is used to distinguish the
modules where an identifier is defined, or
where it is explained in some special way,
from the modules where it is used. A reserved
word or an identifier of length one will not
be indexed except for underlined entries. An
‘Bf ’ is implicitly inserted by VEBVB just after
tbe reserved words function, procedure,
program, and var, and just after Bd and Bf.
But you should insert your own ‘01’ before
the definitions of types, constants, variables,
parameters, and components of records and
enumerated types that are not covered by this
implicit convention, if you want to improve
the quality of tbe index that you get.

B? [P,T] This cancels an implicit (or explicit)
*• I *, so that the next index entry will not be
underlined.

B, [P] This control code inserts a thin space
in VEAVB’s output; it is ignored by TAIGLE.
Sometimes you need this extra space if you are
using macros in an unusual way, e.g., if two
identifiers are adjacent.

•/ (P) This control code causes a line break to
occur within a Pascal program formatted by
VEAVE; it is ignored by TAIGLE. Line breaks
are chosen automatically by 1£X according
to a scheme that works 9954 of the time, but
sometimes you will prefer to force a line break
so that tbe program is segmented according
to logical rather than visual criteria. Caution:
’•/’ should be used only after statements or
clauses, not in the middle of an expression;
use B| in the middle of expressions, in order to
keep VEAVE’s parser happy.

• I [P] This control code specifies an optional
line break in the midst of an expression. For
example, i f you have a long condition between
if and then, or a long expression on the
right-hand side of an assignment statement,
you can use ‘B | ’ to specify breakpoints more
logical than the ones that TjiX might choose
on visual grounds.

B# [P] This control code forces a line break, like
•/ does, and it also causes a little extra white
space to appear between the lines at this
break. You might use it, for example, between
procedure definitions or between groups of
macro definitions that are logically separate
but within the same module.

•MP] Thu control code cancels a line break that
might otherwise be inserted by VEAVE, e.g.,
before tbe word ‘else’, if you want to put a
short if-then-else construction on a single line.
It is ignored by TAIGLB.

V; [P] This control code is treated like a
semicolon, for formatting purposes, except
that it is invisible. You can use it, for
example, after a module name when tbe
Pascal text represented by that module name
ends with a semicolon.

The last six control codes (namely ‘C,’, ‘B/’, ‘01’, ‘OB’, ‘*+’, and ’0;’) have no effect on the Pascal program
output by TAIGLE; they merely help to improve the readability of the T̂ X-formatted Pascal that is output
by VEAVE, in unusual circumstances. VEAVE’s built-in formatting method is fairly good, but it is incapable of
handling all possible cases, because it must deal with fragments of text involving macros and module names;
these fragments do not necessarily obey Pascal’s syntax. Although VEB allows you to override the automatic
formatting, your best strategy is not to worry about such things until you have seen what VEAVE produces
automatically, since you will probably need to make only a few corrections when you are touching up your

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

120

documentation.
Because of the rules by which every module is broken into three parts, the control codes ‘M ’, ‘Cl’, and

‘Cp’ are not allowed to occur once the Pascal part of a module has begun.

Additional features and caveats.
1. The character pairs ‘(s’, ‘a) ' , a n d *.)’ are converted automatically in Pascal text as though they

were T, and respectively, except of course in strings. Furthermore in certain installations of
HEB that have an extended character set, the characters *#’, ‘S’, V, ‘a ’, V, S ’, and *€’ can be used
as abbreviations for ‘o ’, *<■’, '>*’, ‘and’, ‘or’, ‘not’, and ‘in’, respectively. However, tbe latter
abbreviations are not used in the standard versions of HEAVE. VEB and TAIGLE.HEB that are distributed to
people who are installing VEB on other computers, and the programs are designed to produce only standard
ASCII characters as output if the input consists entirely of ASCII characters.
2. If you have an extended character set, all of the characters listed in Appendix C of T h e 1^jKhook can

be used in strings. But you should stick to standard ASCII characters if you want to write programs that
will be useful to the all the poor souls out there who don’t have extended character sets.
3. The TjgX file output by HEAVE is broken into lines having at most 80 characters each. The algorithm

that does this line breaking is unaware of TjgX’s convention about comments following signs on a line.
When TgX text is being copied, the existing line breaks are copied as well, so there is no problem with “/,’
signs unless the original HEB file contains a line more than eighty characters long or a line with Pascal text
in I... I that expands to more than eighty characters long. Such lines should not have ‘X’ signs.
4. Pascal text is translated by a “bottom up” procedure that identifies each token as a “part of speech” and

combines parts of speech into larger and larger phrases as much as possible according to a special grammar
that is explained in the documentation of HEAVE. It is easy to learn the translation scheme for simple
constructions like single identifiers and short expressions, just by looking at a few examples of what VEAVE
does, but the general mechanism is somewhat complex because it must handle much more than Pascal itself.
Furthermore the output contains embedded codes that cause TfcX to indent and break lines as necessary,
depending on the fonts used and the desired page width. For best results it is wise to adhere to the following
restrictions:
a) Comments in Pascal text should appear only after statements or clauses; i.e., after semicolons, after

reserved words like then and do, or before reserved words like end and else. Otherwise HEAVE’s parsing
method may well get mixed up.

b) Don’t enclose long Pascal texts in I... I, since tbe indentation and line breaking codes are omitted
when the |... I text is translated from Pascal to TfeX. Stick to simple expressions or statements.

5. Comments and module names are not permitted in I... | text. After a ‘I’ signals the change from
TjgX text to Pascal text, the next ‘I’ that is not part of a string or control text ends the Pascal text.
6. A comment must have properly nested occurrences of left and right braces, otherwise VEAVE and TAIGLE

will not know where the comment ends. However, the character pairs ‘\{’ and *\}’ do not count as left and
right braces in comments, and the character pair ‘\I ’ does not count as a delimiter that begins Pascal text.
(Tbe actual rule is that a character after ‘V is ignored; hence in ‘\\{’ the left brace does count.) At present,
TAIGLE and HEAVE treat comments in slightly different ways, and it is necessary to satisfy both conventions:
TAIGLE ignores ‘ I ’ characters entirely, while HEAVE uses them to switch between TfcX text and Pascal text.
Therefore, a comment that includes a brace in a string in I... I— e.g., ‘{ look at this I “{"I will be
handled correctly by HEAVE, but TAIGLE will think there is an unmatched left brace, in order to satisfy both
processors, one can write '{ look at this \l*ftbracs\ >’, after setting up‘\dof\leftbracs{|"{"|}’.
7. Reserved words of Pascal must appear entirely in lowercase letters in the HEB file; otherwise their special

nature will not be recognized by HEAVE. You could, for example, have a macro named E N D and it would
not be confused with Pascal’s end.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

121

%%
% WEB SYSTEM
% PROGRAM
% AUTHOR
% CREATION DATE
%%

web
quad_eq.web
Peter J. Nuernberg (pnuernSephoton)
Mon Sep 6 08:51:49 1993

%
% LIMBO MATERIAL Last edited by Bart Childs on May 22, 1992.
i
\input limbo.sty
\def\title{{\tt Quadratic Equation})
% begin Bottom of Contents Page macro
\def\botofcontents(\vskip Opt plus lfil minus 1.5in\rm
{\bigskip\parskip6pt plus2pt \parindent20pt
% begin abstract
NvskipO.Sin
Nnoindent(Nbf Abstract. }\it
% The abstract is put right here!
The quadratic equation
SSa x*2 + b x + c = 0S$
has two roots (notice the \pm):
$$ x = {{- b \pm \sqrt(b'v2 - 4 a c))\over(2 a})$$
)% end abstract
Wf il

\rightline{based on a program by:}
Nrightline(Bart S. Childs)
Nrightline(subsequently translated into \PASCAL{) by:}
Nrightline(D. Dunn)
\rightline{\today)% today.tex should be preloaded, input it if not
\rightline{\miltime)% time.tex should be preloaded, input it if not

)% end of Bottom of Contents Page macro
% This ends the limbo material and begins the WEB
«

8* The quadratic equation. This is one of the great little
steps in learning some of the fine points of mathematics.
The quadratic equation is probably most commonly written as
$$a x~2 + b x + c = 0$$
and is well known to have two roots (notice the \pm):
55 x = {{- b \pm \sqrt(b'2 - 4 a c))\over{2 a))$$
8 The quantity $bA2 - 4 a c$ is called the discriminant.
If it is negative, then we introduce the unsuspecting student
to the world of (Nit imaginary) and (Nit complex) numbers.
0“discriminant8>
8* The program for solving the quadratic equation.
This is a rather straightforward program.
8p

program (quadratic;
0<Type declarations8>
6<Variable declarations0>

begin
@<Input parameterse>
9<Calculate discriminant and solutions8>
0<Output the solutions8>

end.
0 Since we are notentiallv handling complex numbers, we should declare

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

122

an appropriate type.
8<Type declarations8>=

type
complex = record

real_part: real;
imaginary_part: real;

end; (record)
6 The three obvious variables will now be declared. We will use the
simple declaration of I real! because it is logical.
8<Variable declarations8>=

var
a, b, c : real;

6 The input of the three parameters is easily done using the
\PASCAL() Ireadlni statement. However, good programming
practice should require that a prompt be issued first.
8<lnput parameters8>=

writeln(‘Enter the values of a, b, and c.');
readlnla, b, c);

8 The calculation is small, but worthwhile.
This is a paper for pedagogical reasons and so
we will be a little more detailed.
8<Calculate discriminant and solutions0>=

discriminant := b*b - 4.0*a*c;
real_part := -b/(2.0*a);
maybe_part := sqrt(abs(discriminant))/(2.0*a);

8 It is rather obvious that we need to declare these variables.
The additional two variables representing the two parts of the
solution are given somewhat descriptive names.
e<Variable declarations8>=

discriminant, realjpart, maybe_part : real;
8 We will write assign the solutions to two variables.
The discriminant must be checked for sign in order to correctly
assign the solutions.
8<Calculate discriminant and solutions8>=

if (discriminant > 0.0) then begin
xl.real_part := real_part + maybe_part;
xl.imaginary_part := 0.0;
x2.real_part := real_part - maybe_part;
x2.imaginary_part := 0.0;

end (if)
else begin

xl.real_part := real_part;
xl.imaginary_part := maybe_part;
x2.real_part := real_part;
x2.imaginary_part := -maybe_part;

8 Once again, we need to declare these variables.
ScVariable declarations8>=

xl, x2: complex;
8 We write the solutions, making sure to include the imaginary part
only if it is non-zero.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

123

ScOutput the solutions6>=
writeln ('The solutions are:');
write (' xl = ', xl.real_part:5:2);
if (xl.imaginary_part <> 0.0) then
write (' + ', xl.imaginary_part:5:2, 'i');

writeln;
write (' x2 = ', x2.realjpart:5:2);
if (x2.imaginary_part <> 0.0) then
write (' + ', x2.imaginary_part:5:2, 'i');

writeln;
6* Index.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

124

(3:)progran\ quadratic; (4: }type complex=record realpart:real;
imaginarypart:real;end;{:4}{5:}var a,b,c:real;{:5>{8:>
discriminant, realpart,maybepart:real;{:8}(10:)xl,x2:complex;(:10)
begin(6: JwritelnCEnter the values of a, b, and c.');readln(a,b,c); {: 6)
(7:)discriminant:=b*b-4.0*a*c;realpart:=-b/(2.0*a);
maybepart:=sqrt(abs(discriminant))/ (2.0*a);{:7) {9:)
if(discriminant>0.0)then begin xl.realpart:=realpart+maybepart;
xl. imaginarypart:=0.0;x2.realpart:=realpart-maybepart;
x2.imaginarypart:=0.0;end else begin xl.realpart:=realpart;
xl. imaginarypart:=maybepart ;x2.realpart:=realpart;
x2.imaginarypart:=-maybepart;end;{:9>{11;Iwriteln('The solutions are:');
write!' xl = ',xl.realpart:5:2);
if (xl. imaginarypart<>0.0)then write(* + xl.imaginarypart:5:2,'i');
writeln;write(' x2 = ' ,x2.realpart:5:2);
if(x2.imaginarypart<>0.0)then write(' + x2.imaginarypart:5:2,'i');
writeln;(:11)end.{:3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

125

Q uadratic Equation

November 7, 1994

Section Page
The quadratic equation I 1
The program for solving the quadratic equation ... 3 2
Index .. 12 4

A b s t ra c t . T h e q u a d ra tic e q u a tio n
ux3 + fcx + c = 0

has two roots (’notice the ±) :
— 6 ± >/b* — 4ocI= _

based on a program by:
Dart S. Childs

subsequently translated into Pascal by:
D. Dunn

November 7, 1994
16:21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

126

§1 quad ra tic Equation THE QUADRATIC EQUATION 1

1. T he quadratic equation . This is one of tiie great little steps in learning some of the fine points of
mathematics. The quadratic equation is probably most commonly written as

az2 + b z + c = 0

and is well known to have two roots (notice the ±):

—6 ± y/b^ — 4ac r _ —

2. The quantity b2 - 4ac is called the discriminant. If it is negative, then we introduce the unsuspecting
student to the world of imaginary and complex numbers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

127

2 THE PROGRAM FOR SOLVING THE QUADRATIC EQUATION Quadratic Equation $3

3. The program for solving tbe quadratic equation. This is a rather straightforward program,
program quadratic-, (Type declarations 4)(Variable declarations s)

begin (Input parameters 6)(Calculate discriminant and solutions 7)(Output the solutions u)
end.

4. Since we are potentially handling complex numbers, we should declare an appropriate type.
(Type declarations i) =
type com plex — record reaLpart: real;

im ag in a ry .p a rt: real;
end; { record}

This code is used in section 3.

5. The three obvious variables will now be declared. We will use the simple declaration of real because it
is logical.
(Variable declarations s) =
var a,6, c: real;
See eleo eeclion* 8 and 10.
Thi* code i* u*ed in eeclion 3.

6. The input of the three parameters is easily done using the Pascal readln statement. However, good
programming practice should require that a prompt be issued first.
(Input parameters 6) =

U)n(e /n ('E n terutb e uv a lu e s uo f ua , lj b ,uaiidu c . ') ; read In (a, b, c);
Thie code is used in section 3.

7. The calculation is small, but worthwhile. This is a paper for pedagogical reasons and so we will be a
little more detailed.
(Calculate discriminant and solutions 7) =

d isc rim in a n t *— b * b - 4.0 * o ♦ c; real.part «--6/(2.0 ♦ a);
m aybe.part «— sq r t(a b s (d isc r im in a n t)) /(2 .Q * a);

See also section 9.
This code is used in section 3.

8. It is rather obvious that we need to declare these variables. The additional two variables representing
the two parts of the solution are given somewhat descriptive names.
(V ariab ledeclarations s) + =
d iscrim inan t, rcaL parl, m a yb e .p a r t: real;

9. We will write assign the solutions to two variables. The discriminant must be checked for sign in order
to correctly assign the solutions.
(Calculate discriminant and solutions 7) +=
if (d isc r im in a n t > 0.0) then
begin x l .reaLpart «— real.part + m aybe.part; x l .im a g in a ry .p a rt ♦- 0.0;
x2 .rea l.p a rt • - real.part — m aybe.part; x 2 .im a g in a ry .p a rt *— 0.0;
end {if}

else begin z l .r e a l .p a r t «— rea l.part; x l .im a g in a ry .p a rt <— m aybe.part; z2 .rea l.p a rt «— rea l.part;
z2.im aginary.part < maybe.part;
end; {else }

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

128

$10 Quadratic Equation THE PROGRAM FOR SOLVING THE QUADRATIC EQUATION 3

10. Once again, we need to declare these variables.
(Variable declarations 6) +=
z l , x £ : complex;

11 . W e write tbe solutions, making sure to include the imaginary part only if it is non-zero.
{Output the solutions li) =
writeln('ThsuSolutionsu*rs:'); uirile('ujuyxlû u', z l .real.part : 5 : 2);
if (x l .imaginary.part ̂ 0.0) then w r i t t (’u*u u ' , z l .imaginary.part :5:2, 'i');
writeln; wrile(' ,x 2,,',x S .r e a l.p a r t: 5 :2);
if (xS.im aginary.part 0.0) then w rite (’u + iuj',x2 .im aginary.part : 5 : 2, 'i');
writeln;

This code U used in section 3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

129

4 INDEX

12. Index.
a: 5.
abs: 7.
com plex: 4, 10.
discriminant: 2.
d iscr im inan t: 7, 8, 9.
im aginary.pari: 4, 9, 11
m aybe.part: 7, 6, 9.
guadrafic:
rtadln: 6.
real: 4, 5, 8.
re a Lp art: 4, 7, 8, 9, 11.
sqrt: 7.
uhle: 11.
w ritc tn : 6, 11.
x /: 9, 10, 11.
xf: 9, 10, 11.

Quadratic Equation $12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

130

$12 Quadratic Equation

(Calculate discriminant and solutions 7 ,9) Used in section 3.
(Input parameters 6) Used in section 3.
(Output the solutions 11) Used in section 3.
(Type declarations 4) Used in section 3.
(Variable declarations s, s, 10) Used in section 3.

NAMES OF THE SECTIONS 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

131

%%
% WEB SVSTEM : fweb
% PROGRAM : CoolStuff .web
t AUTHOR : Peter Nuernberg (pnuern00photon]
» CREATION DATE : Tue Oct 26 09:02:20 1993
%%
%
% LIMBO MATERIAL Last edited by Bart Childs on May 22, 1992.
%
\input limbo.sty
\def\ItemLevelOne{\parindent=20pt
\par \hangindent \parindent \textindent)
\de£\ltemLevelTwo{\parindent=20pt
\par\indent \hangindent2\parindent \textindent)
\de£\ItemLevelThree{\parindent=2Opt
\par\indent\indent \hangindent3\parindent \textindent)
\de£\ItemLevelFour{\parindent=20pt
\par\indent Undent Undent \hangindent4\parindent \textindent)
\def\title{ (\tt CoolStuff))
t web-mode edits the previous line when creating a new web.
t Make the previous a comment and edit the next i£ you don't use web-mode.
%\def\title{{\tt ?? I need a Title ??))
t begin Bottom o£ Contents Page macro
\de£\botofcontents(\vskip Opt plus l£il minus 1.5in
(\bigskip\parskip6pt plusZpt \parindent20pt
% begin abstract
\vskipO.Sin
\noindent(\bf Abstract.)\it
t The abstract is put right here!
}% end abstract
% BC often puts this in as a comment about pre-release versions ...
»\vskip0.5in
%{\vfill\it * comments on anything else ????
%
%)% end o£ comments on anything else
\vf il
\rightline{Pete)
\rightline{\today)
\rightline{\miltime)

}t end of Bottom of Contents Page macro
% This ends the limbo material and begins the WEB
t
» In fweb's you want an AT-c. AT-C++, AT-n, AT-n9, or AT-Lx at this point
t and be sure to replace 'AT-' with the obvious character!!!!!
0* Test new macros.
MtemLevelOnefl.)
Havelock's portrait of Plato's attack upon the poets and Socrates'
tone of voice in carrying on the discussion both lead us to surmise
that he expected the popular reaction to his attack to be hostile.
\ItemLevelOne{2.)
As Havelock writes, ''He thus exhorts us to fight the good fight
against the powers of darkness."

\ltemLevelTwo(2.1)
There are indeed, indications that the rhapsodes and poets

were highly popular, as we shall see in chapter three.
MtemLevelThree (2.1.1)
The paradox of this popularity is that Plato's attack

upon the written word, on the other hand, was also a reflection of
oooular feeling about the new technology.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

132

\ItemI,evelFour{2.1.1.1)
First, we find that Aristotle and others

apparently accept Plato's understanding of the written word as removed
from knowledge.

\ItemLevelTwo{2.2)
Of particular importance in our study is the special

relationship between the maker and his work of art as Aristotle
concieves it.
0* Index.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

133

%«
% WEB SYSTEM
% PROGRAM
t AUTHOR
% CREATION DATE
%%

fweb
sample.web
Peter Nuernberg [pnuern@@photon]
Wed Sep 15 07:45:55 1993

%
% LIMBO MATERIAL Last edited by Bart Childs on May 22, 1992.
«

%%%%%%%%%%%%mm%%%%%%%%%%%%%%%%%%%%%%%%%
%
% The following code will be added automatically to your "limbo
% material" starting tomorrow. For now, if you want to produce a list
% of consecutively numbered items like the ones that appear in
% sections 4 and 6 of this file, type in the following lines:
t
\newcount\ItemCount
\def\BeginIterns(
\bgroup\globa1\It emCount-0
\parindent35pt \parskiplpt pluslpt
\ifvmode \else\par \fi
}t end definition of Beginltems
\def\EndItems{
\ifvmode \else\par \fi \egroup
)% end definition of Endltems
\def\numltem{
\global \advance \ItemCount by 1
\item(\the\ItemCount .}}
%
% OK. Everything else is back to normal. If you don't want to have
% lists, just blow off the above section.
«
%%%%%%%*%%%%%%%%%%%%%%%%%%%%%%%%%%%%»%%%%%%
\input limbo.sty
\def\title((\tt Sample Web)}

% begin Bottom of Contents Page macro
\def\botofcontents(\vskip Opt plus lfil minus 1.5in
{\bigskip\parskip6pt plus2pt \parindent20pe
% begin abstract
\vskipO.Sin
\noindent{\bf Abstract.)\it
This program uses the formula:
$$\Biggl[\enspace\sum_{temp=2K(z-l) [\enspace(z \bmod temp) =
0\enspace] = 0\enspace\Biggr)S$
to generate prime numbers.
The notation $[expr]$ is taken from (\bf Concrete Mathematics) by
Graham, Knuth, and Patashnik.
The convention therein established is that $[expr] = 1$ if $expr$ is a
true statement.
Otherwise, $[expr] = 0$.
)% end abstract
\vf il
\rightline(Peter J. Nuernberg)
\rightline{\today)% today.tex should be preloaded, input it if not
\riqht1ine{\miltime)* time.tex should be preloaded, input it if not

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

134

)% end of Bottom of Contents Page macro

©•Program Design.
© Problem Description.
This program will, given a positive integer, output the five smallest
prime numbers which are greater than or equal to the given integer.
©Aprime number©>

© Program Inputs.
This program only requires 1 input - a positive integer.
Call this integer x.
The only condition on Sx$ is that $x > 0$.

© Algorithm.
The basic algorithm has the following steps.
\BeginItems
\numltem()
Get x from the user.
\numltem(}
If $x \le 0$, print an error message and exit.
\numltem(}
Set $y = x$.
\numltem{)
Set $iteration = 1$.
\numltem(}
Find P, the smallest prime number greater than or equal to y.
Xnumltemf)
Output p.
Xnumltemf)
Increment $iteration$.
\numltem{)
If Siteration > 5$, quit.
Xnumltemf}
Set $y = p + 1 $.
Xnumltemf)
Goto step 5.
XBndlterns

© Program Outputs.
This program generates 1 output - a prime number.
However, it generates this output 5 times (see above algorithm.)
©'■prime number@>

© Calculations.
Given some number, say z, the following can be used to determine if
z is prime:
SSXBiggl(\enspace\sum_(temp=2)Afz-l)(Xenspacefz Xbmod temp) =
OXenspace] = OXenspaceXBiggr]$$
Xindent\quad This can be done by using the following steps:
XBeginltems
Xnumltemf)
If $z < 2$, quit and report that z is not prime.
Xnumltemf)
Set Stemp = 2$.
Xnumltemf)
If $temp \ge z$, quit and report that z is prime.
Xnumltemf)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

135

If $z \bmod temp = OS, quit and report that z is not prime.
\numicem{)
Increment $temp$.
\numltem()
Goto step 3.
\EndItems
0*prime number0>
0.mod0>

0 Testing.
There is only one input to this program, so the testing is
straightforward.
The first set of cases will involve ''normal*' input-.
The first normal case will test-if the input SIS will produce expected
output of 3, 5, 7, 11, and 13.
The second normal case will test if the input 10 will produce the
expected output of 11, 13, 17, 19, and 23.
The'second set of cases will involve "exceptional'' input.
The first exceptional case will test if the input -1 will produce
Che expected error message.
The second exceptional case will test if the input " A " will produce
a run time error. It is expected that the program will (\bf not} be
able to handle non-numeric input.
(\it These exceptional cases point out that the user must be informed that
non-positive integer input will cause an error message to be printed
and non-numeric input will cause a run-time error.)
0'error0>

0* Index.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

136

S t a p l e Web

November 7, 1994

Section Page
Program D esign 1 1
Index ... 8 2

A b s tra c t . T h i s p ro g r a m u s e s th e fo r m u l a :

T . 1 (x mo<* **nip) = 0 1 = 0
. lcmp=2

to g e n e r a te p r i m e n u m b e r s . T h e n o ta t io n [ezpr) is ta k e n f r o m C o u c re te M a th e m a tic s b y G r a h a m ,
K n u th , a n d P a ta s h n ik . T h e c o n v e n t io n th e r e in e s ta b lis h e d i s t h a t (e z p r) = 1 i f e z p r is a t r u e
s ta te m e n t . O th e r w is e , [e z p r] = 0.

Peter J . Nuernberg
November 7, 1994

16:35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

137

$1 S a a p l* V«b PROGRAM DESIGN 1

1. P rogram Design.

2. Problem Description. This program will, given a positive integer, output the five smallest prim e numbers
which are greater than or equal to the given integer.

3. Program Inputs. This program only requires I input - a positive integer. Call this integer z . The only
condition on z is that z > 0.

4 . Algorithm. The basic algorithm has the following steps.
1. Get z from the user.
2. If z < 0, print an error message and exit.
3. Set if = z.
4 . Set iteration = I.
5. Find p, the smallest prime number greater than or equal to p.
6. O utput p.
7. Increment iteration.
8. If itera tion > 5, quit.
9. Set ir = p + 1.

10. Goto step 5.

5. Program O utputs. This program generates 1 output - a prim e number. However, it generates this
output S times (see above algorithm.)

6 . Calculations. Given some number, say z, the following can be used to determine if z is prime:

« - i

T , [(z mod temp) = 0) = 0
. I« m p s2

This can be done by using the following steps:
1. If z < 2, quit and report th a t z is not prime.
2. Set tem p = 2.
3. If tem p > z , quit and report th a t z is prime.
•I. If z mod t e m p = 0, quit and report th a t z is not prime.
5. Increment temp.
6. Coto step 3.

7. Testing. There is only one input to this program, so the testing is straightforward. The first set of cases
will involve “normal” input. T he first normal case will test if the input 1 will produce expected ou tpu t of 3,
5 ,7 , 11, and 13. The second normal case will test if the input 10 will produce the expected ou tpu t of 11, 13,
17, 19, and 23. The second set o f cases will involve “exceptional” input. The first exceptional case will test
if the input - I will produce the expected error message. The second exceptional case will test if the input
"A” will produce a run time error. It is expected th a t the program will n o t be able to handle non-numeric
input. T h e s e e x c e p tio n a l c a s e s point out (hat (he user tnusl 6c i n f o r m e d (hat non-positive integer input w i l l
ca u se an e rror m e s s a g e to be printed and non-numeric input w i l l cause a run-time error.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

138

2 INDEX

8 . Index,

erro r: 7 .
mod: 6.
prime number: 2, 5, 6.

Sample U«b §8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

139

$$ amt = leases {
1000.00 $ if $ GallonsUsed \leq 4000000;\cr
2000.00 $ if $ 4000000 \leq GallonsUsed \leq 10000000.\cr
)ss
\settabs 6 \columns
\+ & \hfill Acct \# & \hfill Code & \hfill Gallons & \hfill Amount Due & \cr
\+ & \hfill 1234 & \hfill H Sc \hfill 200.00 & \hfill 5.10 & \cr
\+ & \hfill 1234 & \hfill H & \hfill 50.00 & \hfill 5.10 & \cr
\ + & \hfill 1234 Sc \hfill H & \hfill 1200.00 Sc \hfill 5.10 Sc \cr

Nbye

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

140

CPSC 110H
Fall 1993

Design: Due Thursday, 9/16
Program: Due Tuesday, 9/28
PROBLEM:
The manager of the Croswell Carpet Store has asked you to write a program to
print customers' bills. The manager has given you the following information:

a. The store expresses the length and width of a room in terms of feet
and tenths of a foot. For example, the length might be reported as
16.7 feet.

b. The amount of carpet purchased is expressed as square yards.
c. The store does not sell a fraction of a square yard.
d. The cost for carpet is expressed as the cost per square yard.
e. All customers are sold a carpet pad at $2.25 per square yard.
f. Sales tax equal to 4 percent is applied to the cost of the carpet

and the carpet pad.
g. The labor cost is $2.40 per square yard.
h. Large volume customers may be given a discount. The discount may

apply only to the carpet cost (before sales tax), only to the pad
cost (before sales tax), only to the labor cost, or to any combination
of the three charges.

i. Each customer is identified by a five-digit number and that number
should appear on the bill.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

141

The sample output follows:
Croswell Carpet Store

Invoice
Customer number: 26817

Carpet : 574.20
Pad : 81.00

Labor : 86.40
Subtotal : 741.60

Less discount : 65.52
Subtotal : 676.08
Plus tax : 23.59

Total : 699.67

Write the program and test it for the following three customers.
a. Mr. Wilson (customer 81429) ordered carpet for his family room,

which measures 25 feet long and 18 feet wide. The carpet sells for
$12.95 per square yard and the manager agreed to give him a discount
of 8 percent on the carpet and G percent on the labor.

b. Mr. and Mrs. Adams (customer 04246) ordered carpet for their bedroom,
which measures 16.5 feet by 15.4 feet. The carpet sells for $18.90
per square yard and the manager granted a discount of 12 percent of
everything.

c. Ms. Logan (customer 39050) ordered carpet that cost $8.95 per square
yard for her daughter's bedroom. The room measures 13.1 by 12.5
feet. No discounts were given.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

142

Lab 3 - College Station Utilities Billing
CPSC 110
Fall 1993

Design: Due Tuesday, 10/5
Program: Due Tuesday, 10/12 - additional 5 points

Due Thursday, 10/14
Note: Extra points for turning an assignment in early will be given

ONLY if the ENTIRE program works correctly!!
PROBLEM:
You've been hired by College Station Utilities to develop a program they can
use to calculate and print bills for water utilities.
ANALYSIS:
The water rates vary depending on whether the bill is for home use, commercial
use, or industrial use. A code of H means home use, C means commercial use,
and I means industrial use. Any other code should be treated as an error.
For each customer, read the following information from an input file:
Account Number (4-digit integer): columns 1-4
Code (character) : column 6
Gallons of water (real) : columns 8-?
For this particular program, you know that the file will contain 15 customers.
Therefore, a FOR loop may be used. The water rates are computed as follows:
Code H: $5.00 plus $0.0005 per gallon used
Code C: $1,000.00 for the first 4 million gallons used and $0.00025 for

each additional gallon
Code I: $1,000.00 if usage does not exceed 4 million gallons; $2,000.00 if

usage is more than 4 million gallons but does not exceed 10 million
gallons; and $3,000.00 if usage exceeds 10 million gallons

You should produce a report that looks like the following:
College Station Utilities - Billing

Account Gallons Amount
Number Code Used Due
1234 H 200.0 5.10
5678 C 3,000,000.0 1000.00
9012 C 4,500,000.0 1125.00
3847 I 3,500,000.0 1000.00
9832 I 5,000,000.0 2000.00
3892 I 12,000,000.0 3000.00

BILLING REQUIREMENTS:
1. If a code is in error, a message should be displayed and the amount due

set to $0.00. However, you should still print the input information (in
the output procedure).

2. Use a CASE statement for distinguishing the code.
3. Use IF-THEN-ELSE to calculate the amount due based on usage.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Lab 4 - Caswell Catering and Convention Service
CPSC 110
Fall 1993

Design: Due Thursday, 10/21
Mr. Caswell has agreed to meet with each of the lab sections on
Tuesday, 10/19 to answer any questions you might have. Please
come to class prepared to obtain any necessary information.

Program: Due Thursday, 10/28 - additional 5 points
Due Tuesday, 11/2

Note: Extra points for turning an assignment in early will be given
ONLY if the ENTIRE program works correctly!!

PROBLEM:
You've been hired by The Caswell Catering and Convention Service to develop a
program they can use to calculate and print customer bills.

ANALYSIS:
The catering rates vary depending on number/type of meals, type of banquet
hall used (if any), day on which catering is done, and discount (if any).

a. The adults may be served Deluxe or Standard meals, dessert included.
b. Children's meals are priced as a fixed percent of adult meals.
c. Everyone within a given party must be served the same meal type.
d. There are five banquet halls. The Caswells are considering increasing

the room fees in about six months and this should be taken into
account.

e. A surcharge is added to the total bill for catering done on certain
days.

f. All customers will be charged the same rate for tip and tax.
g. To induce customers to pay promptly, a discount is offered if

payment is made within ten days. This discount depends on the amount
of the total bill.

h. Bills are printed by party's last name.
i. You should produce a report that itemizes the appropriate information.

BILLING REQUIREMENTS:
1. The customer information will be read from a file.
2. Use a separate procedure for each of the following:

a. compute meal cost;
b. compute room rate;
c. compute surcharge;
d. compute discount;
e. print a statement.

3. Use functions to compute the tax and tip.
4. You must pass parameters for this program. No procedure may access a

global variable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

144

Lab 5 - The College Station Corner Grocery
CPSC 110
Fall 1993

Design: Due Tuesday, 11/9
Program: Due Friday, 11/19 - additional 5 points

Due Tuesday, 11/23
Note: Extra points for turning an assignment in early will be given

ONLY if the ENTIRE program works correctly!!

PROBLEM:
Many supermarkets use computer equipment that allows the checkout clerk to
drag an item across a sensor that reads the bar code on the product container.
After the computer reads the bar code, the store inventory data base is
examined, the item's price and product description are located, inventory is
adjusted, and a receipt is printed. Your task is to write a program that
simulates this process.
ANALYSIS:
Your program will need to read (and print) the starting inventory information
from the data file on disk (GROCl.DAT) into an array of records. The data in
the inventory file is written one item per line, beginning with a 2-digit
product code, followed hY a 30-character product description, its price, and
the quantity of that item in stock. Your program will need to copy (and
print) the revised version of the inventory to a new data file (GROC.OUT)
after all purchases are processed.
Processing customers' orders involves reading a series of product codes
representing each person's purchases from a second data file (GROC2.DAT).
A zero product code is used to mark the end of each customer order. For each
product purchased, the product price and description are printed on the
receipt. At the bottom of the receipt, you are to print the total for the
goods purchased by the customer.
REQUIREMENTS:
1. The inventory and customer information will be read from a file.

The revised inventory must be written to a file.
2. You must pass parameters for this program. No procedure may access a

global variable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

145

Lab 6 - The College Station Corner Grocery
CPSC 110
Fall 1993

Program: Due Tuesday, 12/7
PROBLEM:
This is the same problem as that of Lab 5. You've been hired by College
Station Corner Grocery to develop a program they can use to maintain their
store inventory.
ANALYSIS:
Same as that of Lab 5.
REQUIREMENTS: You must meet the following requirements:
1. Your main program should consist of a minimum of three procedure calls:

initialize (for files), input, and processing.
Remember, however, the main program should only have procedure calls.
SO, NO CODE OTHER THAN CALLS IN THE MAIN PROGRAM.

2. You are required to use the EOF function for reading in the file.
3. You ARE required to pass parameters for this program.
DIFFERENCES: Lab 6 differs from Lab S in the following ways:
1. Instead of using arrays, you should use a linked list of information.

You should create a record type which contains the information in the
input file, as well as a pointer to the next record.

2. You may add information to the list in any.manner (i.e., add records
to the front of the list, the middle of the list, or the end of the
list).

The input file is the same as that of Lab 5. Just use LAB5.DAT.
Save the above program (name the file POINT.PAS) on a 3.5" disk. Turn in the
disk AND printout of the program on the due date specified above. The code
you turn in should adhere to all applicable style standards.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

146

CPSC 110H
Exam 1

September 24, 1993
Name ____________________________
Indicate whether the following statements are True or False (2 points each).
 1. The control unit is a part of the main I/O device.
 2. Because of the difficulty of producing programs as compared with

producing equipment, programs are called the hardware and equipment
is called the software.

 3. After a Pascal program is compiled successfully, the source code
can be executed directly.

 4. Files can contain either the data for a program, or the program
statements themselves.

 5. A syntax error in a program is an error that causes the program
to produce incorrect output.

 6. A Pascal standard identifier (such as Real and WriteLn) has a
special meaning and should not be redefined.

 7. Constants are used to hold numeric values that may or may not
change during program execution.

Multiple Choice (2 points each):
 8. Which of the following is NOT a high-level computer language?

A) assembler D) Pascal
B) COBOL E) all of the above are high-level languages
C) BASIC

 9. Writing a string literal with a format specification causes the
string to be
A) left-justified in the field, and truncated on the right if the

field is too small.
B) right-justified in the field, and truncated on the left if the

field is too small.
C) left-justified in the field, and truncated on the left if the

field is too small.
D) right-justified in the field, and truncated on the right if the

field is too small.
E) right-justified in the field, and the field is enlarged if it is

too small.
 10. The value of 3 * 4 div (10 mod 4) - 18 is

A) undefined D) -6
B) -12 E) none of the above
C) -14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

147

11. (5 points) A WEB file is built from units called sections. Each section
can have a definition part. Name (or describe) the other two parts that
may be contained in a section.

a. ___ —
b.________ ___

12. (15 points) Give the GNU emacs key sequence necessary to accomplish each of
the following strokes (i.e., don't give the PC compatible keystrokes):
a. Move to the end of the current line ____________________
b. Delete a character forward (under cursor) ___________________
c. Save a file on disk (without leaving emacs) ___________________
d. Scroll to previous screen ___________________
e. Go to the end of your buffer (or file) ___________________

13. (10 points) Given a WEB file named PAINT.WEB, list and describe the steps
necessary to be able to execute the Pascal program PAINT.PAS (i.e.,
include a narrative which explains the purpose of each step).

14. (5 points) Distinguish between the WEB control codes @* and 6 (space).
Explain the purpose of each code. Why would you use one or the other?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

148

Reproduced with

15. (10 points) What is the output from this program? Put your answers on
the lines below with one character on each dash, being sure to include
any spaces that would appear in the output.

input:
155 13.68 UWYZ 123 ABC
-9 XXX 12

program Fun;
var

A : integer; B : real; C : char;
begin

Read (A, B, C, C, C);
ReadLn (C, B) ;
ReadLn (A);
B := B ♦ (Abs(Sqr(A)I;
A := 25 div 9 mod 2 + 3 mod 2;
C := Pred(PredtC));
Write ('The value of A is A : 51;
WriteLn (‘and B is B :5:2);
WriteLn ('The value of C is C);
Write ('A + B is ', A + B :5;2);
Write ('and A * B is ', A * B :5:2)

end.

permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

16. (20 points) Use your problem-solving skills to state the steps necessary
to solve this problem. Your answer should be in paragraph form. Mo
Pascal code)
Ima Aggy is quite a traveller and likes to keep track of statistics
regarding her trips. She has hired you to write a program to compute her
average speed, miles per gallon, and the average cost per mile for a
given trip. You may assume Ima can give you the necessary information
to make the calculation. You may also assume Ima fills her car
immediately before and after a trip. (Note: the average speed will be
low because it can include rests.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

150

17. (15 points) Write the PASCAL code to solve the problem described in
question #16. NOTE: For test taking purposes, it is not necessary
to document your programs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

151

CPSC 110
Exam 2

October 22, 1993
Name___________________________
(2 pts each) Indicate whether the following statements are True or False.
 1. in counter-controlled loops, the loop-control variable must be

initialized to zero before the loop begins to execute.
 2. The simplest way to avoid side effects is to use all variables

globally, since when all the declarations are centrally located,
it is easier to see where individual variables are modified.

 3. a variable defined in a block can always be referenced in its
block and any nested within its block.

 4. The sentinel value is always the last value added to a sum being
accumulated in a sentinel-controlled loop.

 5. When a program starts, but before any Read statements are executed,
EOLN could be true.

 6. A variable name defined in a block is hidden from being referenced
outside the block in which it is defined.

 7. Give the value of the Boolean expression, assuming that A = True,
B = False, and C = False
C or (A and (B or not C))

(2 pts each) Multiple Choice - select the BEST answer.
 8. Assuming that X is 15 and Y is 25, the value of the expression

X = (Y + X - Y) is
A. 15 D. False
B. 25 E. The expression is invalid, since the colon
C. True in front of the equal sign is missing.

 9. If a variable declared locally in a procedure has that same name as
a global variable, then the compiler will
A. issue an error message indicating that a duplicate identifier has

been declared.
B. issue an error message indicating that the name has multiple

meanings.
C. interpret occurrences of the name in the procedure as referencing

the locally declared variable.
D. interpret occurrences of the name in the procedure as referencing

the program variable.
E. none of the above.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

152

10. Consider the following program:

program What;
var

R, X, Y, Z, W : Char;
begin

ReadLn(X, Y, Z, W);
if X < Y then R := X
else R := Y;
if R > Z then R := Z;
if R > W then R := W;
WriteLn(R)

end.
What is the program output if the user types runt followed by
RETURN when the program is run?
A. r D. t
B. u E. none of the above
C. n

11. What does this program segment do?
X := (N mod 2) = 0;
S := 0;
for i := N downto 1 do

begin
if X then S := S + i;
X := not X

end;
A. Add all numbers from 1 to N.
B. Add all the numbers from 1 to N-l.
C. Add the even numbers from 1 to N.
D. Add the odd r bers from 1 to N.
E. None of the arove.

Consider the following program segment. Assume that all variables are
of type integer.

t := 0; p : = 0; n :=0; s := 0;
ReadLn(x);
while x <> s do

begin
if x > 0 then p := p + 1
else n := n + 1;
t := t + 1;
ReadLn (x)

end;
 12. The final contents of variable t can best be described as the

A. count of the number of data items read.
B. count of the number of positive data items read.
C. count of the number of negative data items read.
D. sum of all negative data items read.
E. sum of all data items read.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

153

For the next 3 questions, consider the following program skeleton:

program Main;
var

X, Y, Z : Integer;
procedure Procl (XI, Y1 : Integer);
var

21 : Integer;
procedure Proc2 (Y2 : integer);
var

Z2 : Integer;
begin ... end;
begin ... end;
procedure Proc3 (X3 : Integer);
var

Z3 : Integer;
begin ... end;
begin ... end.

13. Proc2 could be called in Procl with the parameter Yl.
14. Z3 can be accessed by all parts of the program.
15. Procl could be called in Proc3 with the parameters X and Y.

Short answer:
16. (15 points) Write a function that computes the amount of money you owe

for a specified number of parking tickets received at a university.
Assume the charge per ticket is $15 for up to 4 tickets, and a flat fee
of $75 is charged for 5 to 8 tickets. An additional $15 is charged for
each ticket received over 8. Use a CASE statement as the decision
statement.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

154

17. (15 points) The real estate tax on resident homes is to be computed as
follows:

Assessed Value Computed Tax

$30,000 or less
$30,000 < assessed value <= $50,000

$50,000 < assessed value <= $80,000

assessed value > $120,000

$800
$800 + 1% of assessed value
over $30,000
$800 + 1.2% of assessed value
over $30,000
$800 + 1.4% of assessed value
over $30,000
$800 + 1.5% of assessed value
over $30,000

Write the statement(s) necessary to calculate the real estate tax.
Assume that Value and Tax have been declared as Real variables.
Use an IF statement and do not make any unnecessary tests. Any
value less than $0 should be flagged as an error.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

155

18. (15 points) What is the output from this program?

program Strange;
var

Who, Where : Integer;
procedure Stranger (var Who : Integer; What : Integer);
begin

Who := 3 * What;
What := 2 - Who;
WriteLn (Who:4, What:4)

end;
procedure EvenStranger (What : Integer; var Where : Integer);
begin

What : = What + 5;
Stranger (Where, What);
WriteLn (What:4, Where:4)

end;
begin

Who := 2; Where := 4;
WriteLn (Who:4, Where:4);
EvenStranger (Who, Where);
WriteLn (Who:4, Where:4);
Stranger (Where, Who);
WriteLn (Who:4, Where:4)

end.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

156

19. (25 points) Use your problem-solving skills to state the steps necessary
to solve this problem. Your answer should be in “problem-solving" form.
No Pascal code!
Whatsamata Mining has hired you to write their payroll program. They
give you the following information;

* employees are paid hourly and will receive overtime for over 40
hours-,

* federal income tax is based on gross salary; however, there is a
fixed dollar amount deduction per dependent before the tax is
calculated,

* social security is based on gross,
* if an employee works in the city office, there is a city tax
which is a fixed percentage of gross,

* if an employee is a union member, dues are a fixed percentage
of gross.

The president of the company would like to see information for each
employee, as well as totals for the company. She is particularly
interested in the number of hours of overtime and the amount of
payroll money which is spent on overtime versus regular time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

157

CPSC 110
Exam 3 - Part I

November 19, 1993
Name

(25 points) Your conputer science instructor wants you to write a program
which will grade the final exam for the course and calculate the final
grade for each student.
The final exam consists of 80 true-false and multiple choice questions.
The results of the exam have been coded for input to the program. Your
instructor would like to see the following for the exam:

* each student's score and grade;
* the number of students taking the exam;
* exam statistics, including low score, high score, median score, and

In addition to the final exam, the instructor will provide the necessary
scores for each student in order for you to calculate the final grades for
the course. The final course grade is made up of 3 tests (at 15% each),
a homework grade (which is 35% of the grade), and the final exam. The
final grades will be calculated as follows:

‘ A - the grade is at least 1 standard deviation above the average;
* B - the grade is at least 1/2 standard deviation above the average;
* C - the grade is at most 1/2 standard deviation below the average;
* D - the grade is at most 1 standard deviation below the average;
* F - otherwise.

Use your problem-solving skills to state the steps necessary to solve
this problem. Your answer should be in "problem-solving" form.
NO Pascal code!

Input:
1) exam key
2) student ID or name
3} students answers to final exam
4) test scores (3)
5) homework grade

c) grade on final exam
d) number of students taking exam
e) low score on the exam
f) high score cn the exam
g) median score on the exam
h) average score on the exam

average.

Output
1) Final exam -

a) student ID or name
b) score on final exam

2) Final grades -
a) student ID or name
b) final grade in course

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

158

Algorithm development:
1) Read and store the exam key.
2) For each student, determine the final exam grade and collect

statistics -
a) read student answers;
b) compare answers to key and determine the number correct;
c) calculate exam score = number correct / number of questions;
d) calculate exam grade = if score >= 90, then 'A'

if 80 <= score < 90, then 'B'
if 70 <= score < 80, then 'C'
if 60 <= score < 70, then 'D'
if score < 60, then 'F‘;

e) print the student's ID, score, and grade;
f) count the student;
g) if score < low score, then low score;
h) if score > high score, then high score;
i) accumulate the score (for average);
j) store the score (for median).

3) Calculate the exam average = total of scores / number of students.
4) Determine the median score by arranging the scores in order and

selecting the middle score.
5) Print the number of students taking exam, low score, high score,

median score, and average.
6) For each student, determine the final grade in the course -

a) read student test scores and homework grade;
b) calculate test score = (testl + test2 + test3) / 3 * 0.45;
c) calculate homework score = homework grade * 0.35;
d) calculate final exam score = final exam * 0.20;
e) calculate final score = test score + homework score + final exam

score;
f) count the student;
g) accumulate the score (for average).

7) Calculate the class average = total of scores / number of students.
8) Calculate the standard deviation = formula given in class.
9) Calculate final grade = if score >= 1 * standard deviation +

average, then 'A' else
if score >= 0.5 * standard deviation +

average, then 'B' else
if score >= average -

0.5 * standard deviation, then 'C' else
if score >= average -

1 * standard deviation, then 'D' else
if score < average -

1 * standard deviation, then 'F';
10) Print the student's ID, score, and grade.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

159

CPSC 110
Exam 3 - Part II

November 22, 1993

Name _________ __________________

True/False (2 points each);
Consider the following declarations as you answer questions 1 - 4 and
determine whether each assignment statement is legal (true) or not (false).

type
Line = array I1..50] of Char;
Last = array('A'..'Z') of Integer;
Name = string[101;

var
AList, BList : Line;
CList : array (1..50] of Char;
LastName : Last;
MyName ; Name;
AChar : Char;
I : Integer;

 1. AList[30] := CList[50];
 2. AList := CList;
 3. WriteLn(Name);
 4. LastName!'Q'] := AChar;
 5. The following double use of the identifier A is legal.

type R = record
A, B : real

end;
var A : integer;

 6. If A is of type array [1..5, 1..10] of Boolean then the expression
A[4,2] refers to element A row 2 and column 4.

 7. A recursive procedure must have only one stopping case, and all
other cases must reduce to that stopping case in a finite number
of steps to avoid infinite recursion.

 8. The elements of an array must be accessed one at a time, from the
beginning to the end.

 9. The largest possible dimension of a multidimensional array is three.
 10. If the expression A[i].B is legal then A must be a one-dimensional

array of records.
Multiple Choice (2 points each):
 11. Problems which lend themselves to recursive solution

A) have one or more simple cases that can be used to terminate
repetition.

B) can be reduced to one or more simpler cases of the same
problem.

C) can be reduced to one of the simplest non-recursive cases in
a finite number of steps.

D) all of the above.
E) none of the above.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

160

 12. Which of the following is not a correct use of a field selector,
given the declarations below?
type

Disc = record
title, artist : string[20];
year : 1900..2000;
RPM : 16..78

end;
var

PhonoRecord : Disc;
Character : char;

A) PhonoRecord.RPM := 33;
B) Character := PhonoRecord(4].Artist;
C) PhonoRecord.Year := 1958;
D) PhonoRecord.Titlell! := 'Z';
E) All of the above are legal.

For the next two questions assume the following declarations:
type

Range = l..Max;
ArrayType = array {Range) of Integer;

var
A : ArrayType;
I, J, Temp : Integer;

 13. What is the effect of the following program segment?
Temp := 0;
for I := 2 to Max do

if A [i] > A[l) then
Temp :- Temp + 1;

A) Reverses the numbers stored in the array.
B) Puts the largest value in the last array position.
C) Counts the number of elements of A greater than its first

element.
D) Arranges the elements of the array in increasing order.
E) None of the above

 14. What is the effect of the following program segment?
for I := 1 to Max - 1 do

if A[i] > A[i + 1] then
begin
Temp := A[i];
A [i] := Afi + 1);
A[i + 1] := Temp

end;
A) Reverses the numbers stored in the array.
B) Puts the largest value in the last array position.
C) Counts the number of elements of A greater than its first

element.
D) Arranges the elements of the array in increasing order.
E) None of the above.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

IS. Which o£ the following is syntactically identical to the declaration
type A = array (1..4, 'a'..'z'] of integer?
A) array II..41 ['a'..'z'] of Integer;
B) array i'a'..'z‘, 1..4] of Integer;
C) array [1..4] of array ['a'..'z'] of Integer;
D) array ('a'..'z'] of array [1..4] of Integer;
E) none of the above.

const Top = 10;
type namestring = packed array [1..10] of char;

index = l..Top;
recentry = record
name : namestring;
quantity : integer;
price : real

end;
entrylist = array [index] of recentry;

var A : entrylist; i, j : integer; max : real;
16. Given the above declarations, Which section of code below will print

only the name of the item with the highest price in the inventory?
A) for i := 1 to 10 do

if Afi].price >= A[i+1J.price then
Write(A[i] .name) ;

B) max := A(1].price;
j := 1;
for i := 2 to 10 do

if A[i].price > max then
max ;= A(i].price;

j := i;
Write(A[j].name);

C) max : = A[1J.price;
j := 1;
f o r i := 2 to 10 do

if A [i].price > max then begin
max ;= A[i].price;

j := i
end;

Write(A[j].name);
D) i := 1;

max := A[i).price;
j := i;
while i < 10 do begin

if A[i).price > max then begin
max A[i].price;

j := i
end

end;
Write(Alj).name);

E) two of the above sections of code will perform correctly.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

162

17. What is written by the following program?
program num;
var x : integer;
function ampersand (n : integer) : integer;
begin

if n = 0 then
ampersand := 0

else
ampersand := (n mod 3) + ampersand (n - 1)

e n d ;
b e g in

x := 8 ;
W r i te L n (a m p e r s a n d (x))

e n d .

A) 9
B) 2
C) 7

18. Assuming that type Flavor = (Chocolate, Vanilla, ButterBrickle,
Spumoni) and that the value of variable F (type Flavor) is Vanilla,
what is the value of Ord(Succ(Succ(F)))?
A. ButterBrickle
B. Spumoni
C. 3
0. 4
E. undefined

19. Given that X, Y, and Z are records of different types with fields
of different names, which expression has the same effect as the
one shown below?

with X do
with Y do

with Z do
A. with [X..Z] do
B. with X, Y, Z do
C. with X.Y.Z do
D. with X or Y or Z do
E. none of the above

20. Consider the following code
F := 1;
for I := 2 to N do

if AUl >= A[F] then
F := I;

Which item best describes the operation being performed:
A. Rearrange the first N components of the array A in descending

order.
B. Rearrange the first N components of the array A in ascending

order.
C. Place the largest component of the array A in position N.
D. Compute the value of largest component in array A.
E. Compute the subscript of the last occurrence of the largest of

the first H components of the array A.

D) 8
E) none of the above

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

163

Short answer:
21. (6 points) Given the following declarations, write the

Pascal code necessary to initialize the elements of the array in
column-major order to the value 1 Declare any additional variables
you may need.

type
Color = (Red, Orange, Yellow, Green, Blue, Violet);
Texture = (Satin, Velvet, Coarse, Rough);
ArrayType = array (Color, Texture! of Char;

var
SeeFeel : ArrayType;

22. (10 points) Write a Pascal procedure with 3 parameters, a 2-dimensional
array of reals and two integers. The procedure is to return, via the two
integer parameters, the row and column number of the largest real number
in the array. You may assume that there are no duplicate values in the
array. The following declaration appears in the main program:

type MatrixType = array(1..50, 1..20] of Real;
procedure FindBiggest(

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

164

23. (4 points) Study the following type and variable declarations and
then write statements which modify the variable Applicant as described
below.

type
string20 = string(20);
TwoChars = string[2];
Relation = (Mother, Father, Son, Daughter, sister, Brother);
NameRecord = record

First : string20;
Middle : char;
Last : string20

end;
AddressRecord = record

Street, City : string20;
State : TwoChars;
Zip : string(5]

end;
PersonType = record

Name : NameRecord;
Address : AddressRecord

end;
DependentRecord = record

Who : PersonType;
Age : 1.. 99 ;
Rel : Relation

end;
Dossier = record

Person, Spouse : PersonType;
NumDependents ; 0..10;
Dependent : array II.. 101 of DependentRecord

end;
var

Applicant : Dossier;

a) S e t t h e a p p l i c a n t ' s l a s t nam e t o S m ith .

b) S e t t h e s p o u s e 's s t a t e t o TX.

c) S e t t h e t h i r o d e p e n d e n t 's f i r s t nam e t o P a t r i c k .

d) Add o n e t o t h e s e c o n d d e p e n d e n t 's a g e .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

165

24. (5 points) Declare a data type which could be used to hold information
about a student in a class. The information that your record must hold
is student name (15 characters), social security number, three test
scores (integers), six lab scores, the final exam score, the average of
all the scores, and the overall course grade (A, B, C, D, or F) .

25. (5 points) Now declare a data type which contains the above information
for the entire class. It must hold class number (an integer), the
instructor's name (15 characters), information about 100 students, the
overall class average, the highest average in the class, the lowest
average in the class, and the median average in the class.

26. (5 points) Declare a type which contains information about all of the
classes in the department. It should hold department name, number of
faculty, and the above information about all of the classes. Assume that
there are 50 classes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

166

cpsc n o k - f «.u m s
FINAL EXAM

Name

The f i n a l exam i s w o rth 200 p o in t s . Each of th e t r u e / f a l s e and m u l t i p le c h o ic e q u e s t io n s
w i l l be w e ig h te d 2 p o i n t s , g iv in g a t o t a l o f 160 p o i n t s . The s h o r t answ er q u e s t io n s w i l l
be w o rth th e re m a in in g 40 p o in t s .

I n d i c a t e w h e th e r th e fo llo w in g s ta te m e n ts a r e t r u e o r f a l s e .

 1. When a program b e g in s t o e x e c u te , th e c o n te n ts o f th e memory c e l l s i t u s e s a r e
i n i t i a l l y em pty.

 2 . S em ico lons m ust b e i n s e r t e d a f t e r e v e ry p rog ram s ta te m e n t o c c u r r in g betw een th e
b e g in and end s ta te m e n ts o f th e program body.

 3 . B e fo re a new v a lu e can b e s to r e d i n a memory c e l l , a program m ust e x e c u te a
s ta te m e n t to e r a s e i t s fo rm er c o n te n t s .

 4 . More th a n one P a sc a l s ta te m e n t can be p la c e d on a s i n g l e l i n e .

 5 . C o n s ta n ts can be d e c la r e d in p ro c e d u re s , b u t v a r i a b l e s m ust be d e c la r e d in th e
m ain p rogram .

 6 . I f A and B a r e th e names o f p ro c e d u re s d e c la r e d in a P a s c a l p ro g ram , th e n th e
s ta te m e n t seq u en ce b e g in A; B; A end i s l e g a l in th e p ro g ram body.

 7 . A n e s te d i f s ta te m e n t o c c u rs when th e t r u e o r f a l s e s ta te m e n t o f a n i f s ta te m e n t
i s i t s e l f an i f s ta te m e n t.

 8 . I f A and B a r e a r r a y s o f th e same d a ta ty p e , th e n th e s ta te m e n t A : = B; c o p ie s
ea c h e lem en t o f B t o th e c o rre sp o n d in g e lem en t o f A.

 9 . A f te r th e l a s t s ta te m e n t o f a p ro c e d u re e x e c u te s , c o n t r o l i s t r a n s f e r r e d t o th e
n e x t d e c la r e d p ro c e d u re .

 10 . The R e se t p ro c e d u re r e s e t s EOF and EOLN t o f a l s e .

 11. F i l e s sh o u ld n e v e r b e c lo s e d e x p l i c i t l y in T urbo P a s c a l .

 12. The s t r i n g •ABCE+D+-* i s a l e g a l p o s t f i x e x p re s s io n .

 13. A v a r i a b l e name d e f in e d in a b lo c k i s h id d e n from b e in g r e f e r e n c e d o u t s id e th e
b lo c k in w hich i t i s d e f in e d .

 14. A r e c u r s iv e s o lu t io n to a problem o f s i z e N, i s a lw ays r e d u c ib le t o a p rob lem
o f s i z e N - 1.

 15. B la i s e P a sc a l d ev e lo p ed th e P asc a l la n g u a g e .

 16 . When a v a r i a b l e o f ty p e 'R e a l i s c r e a te d by th e New p ro c e d u re , i t can t h e r e a f t e r
h o ld a R eal number.

 17. A ll p o in t e r s t o a node t h a t i s r e tu rn e d t o th e h eap (d isp o se d) a r e a u to m a t ic a l ly
r e s e t t o n i l .

 18. I f t h e Head p o in t e r t o a l in k e d l i s t i s p a s s e d a s a v a lu e p a ra m e te r t o a
p ro c e d u re , th e n a copy o f th e l i s t i s made in t h e p r o c e d u r e 's l o c a l d a ta a r e a .

 19. The c o n d i t io n in th e w h ile s ta te m e n t i s t e s t e d a t th e en d o f each p a s s .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

167

 20.

 21 .

 2 2 .

 2 3 .

 2 4 .

 2 5 .

 2 6 .

 2 7 .

 2 8 .

 29 .

 30 .

 3 1 .

 3 2 .

 33.

 34 .

 3 5 .

 36 .

 37 .

 38 .

 39 .

 40 .

 41 .

I f P, 0 , and R a r e p o in t e r v a r i a b l e s , th e n th e s ta te m e n ts below in te r c h a n g e th e
c o n te n ts o f Che nodes p o in te d to by P and Q.

P - Q«; Q ' := P -;

W hile lo o p s t h a t i t e r a t e z e r o tim es in d i c a t e im proper v a r i a b l e i n i t i a l i z a t i o n
o r im proper fo rm u la t io n o f t h e w h ile c o n d i t io n .

G ive t h e v a lu e o f th e B oo lean e x p re s s io n , assum ing t h a t A = T ru e , B = F a ls e ,
and C = F a l s e .

n o t (B and C) o r A

C o r A and B and C

n o t B o r (C an d n o t A)

I f X = 3, th e n th e B oolean c o n d i t io n X > 2 and X < 4 i s s y n t a c t i c a l l y c o r r e c t .

I f you d e f in e a v a r i a b l e X t o be of ty p e 1. .8 , an d i f th e number 9 was ty p ed in
r e sp o n s e to t h e s ta te m e n t Read (X), th e n th e com puter w i l l prom pt t h e u s e r to
e n te r a new v a lu e f o r X.

The e x p r e s s io n T ru e < F a l s e i s f a l s e .

Each o f th e ty p e s I n t e g e r , R e a l, C har, and B oolean i s an o r d in a l ty p e , s in c e
each h a s a n u m e ric a l r e p r e s e n ta t i o n in th e c o m p u te r 's memory.

E num erated ty p e v a r ia b le s ca n no t be r e a d o r w r i t t e n d i r e c t l y .

The o r d in a l v a lu e o f t h e t h i r d v a lu e l i s t e d in t h e d e c l a r a t i o n o f an enum erated
ty p e i s 3 .

I f X i s a v a r i a b l e o f th e enum erated ty p e (A p p les, B ananas, O ranges) and h as th e
v a lu e B ananas, th e n th e e x p re s s io n X < O ranges h a s v a lu e ________ .

A v a r i a b l e d e c la r e d o f enum erated ty p e (0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 1 may be u sed to
s to r e an I n t e g e r in th e ra n g e 0 to 9.

The Read p ro c e d u re , w ith num eric v a r i a b l e s , s k ip s a l l n o n -n u m eric c h a r a c te r s
u n t i l i t comes t o a •■»', d i g i t , o r < eof> .

P ro c e d u re s c an be c a l l e d s e v e ra l tim es from s e v e ra l d i f f e r e n t p la c e s in th e
p rog ram , s in c e th e program k eeps t r a c k o f w here c o n t r o l i s t o r e t u r n a l t e r a
p ro c e d u re f i n i s h e s i t s l a s t s t e p .

The f i e l d s e l e c t o r in a s ta te m e n t c o n s i s t s o f t h e re c o rd v a r i a b l e name, fo llo w ed
by a p e r io d , fo llo w ed by a f i e l d i d e n t i f i e r from th a t r e c o rd ty p e .

T h is a s s ig n m e n t s ta te m e n t i s v a l id i f a l l v a r i a b l e s a r e d e f in e d a s ty p e in te g e r :
A = B + C.

The s e n t in e l v a lu e i s a lw ays th e l a s t v a lu e added to a sum b e in g accu m u la ted in
a s e n t in e l - c o n t r o l l e d lo o p .

An en u m era ted ty p e v a r i a b l e can be a lo o p c o n t r o l v a r i a b l e f o r a c o u n te r ­
c o n t r o l l e d lo o p .

The O rd f u n c t io n may be a p p l ie d to enum erated ty p e v a r i a b l e s .

The c o n d i t i o n i n t h e w h ile s ta te m e n t i s t e s t e d a t th e end of each p a s s .

The New s ta te m e n t m ust be e x e c u te d b e fo re a p o in t e r v a r i a b l e can b e u se d .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

168

 42. S ta te m e n ts in a h ig h - le v e l lan g u ag e a r e c o n v e r te d t o s ta te m e n ts in m ach ine
lan g u ag e by a l o a d e r .

 43 . A s y n ta x e r r o r in a p rogram i s an e r r o r t h a t c a u s e s t h e p rogram t o p ro d u c e
i n c o r r e c t o u t p u t .

 44. I f th e v a lu e o f X i s 7 35 , t h e s ta te m e n t W riteL n (X :2) w i l l n o t c a u se th e num ber
to be d i s p la y e d i n c o r r e c t l y .

 45. The i n s e r t i o n o£ comments i n a p rogram n e i t h e r c a u s e s t h e p rogram t o ru n m ore
s lo w ly , n o r c a u s e s t h e o b je c t code t o t a k e u p m ore s p a c e .

 46 . In an a r i t h m e t i c e x p r e s s io n , w ith o u t any p a r e n th e s e s , t h e com puter a lw ay s
p e rfo rm s t h e le f tm o s t o p e r a t io n f i r s t .

M u lt ip le C ho ice - S e l e c t Che B e s t Answer.

 4 7 . Which o f t h e fo llo w in g i s n o t a n a d v a n ta g e o f a h i g h - le v e l lan g u ag e?
a . i t i s e a s i e r t o u s e th a n m achine la n g u a g e .
b. Its statements resemble English.
c . I t i s p o r t a b l e .
d . Memory can b e r e f e r e n c e d s y m b o lic a l ly .
e . I t i s e a s y f o r t h e m achine t o u n d e r s ta n d .

 48. Which o f t h e fo llo w in g s ta te m e n ts c a l l s p ro c e d u re XYZ?
a . C a l l XYZ; d . p ro g ram ABC (XYZ);
b . p ro c e d u re XYZ; e . none o f th e s e
c . XYZ;

 49. I f a c o m p u te r 's c o l l a t i n g se q u en ce p la c e s u p p e r - c a s e l e t t e r s in c o n s e c u t iv e
o r d in a l p o s i t i o n s , th e n O r d ('F ') - O r d (S u c c ('A ')) =
a . Not d e f in e d d . 'D '
b . 5 e . 'B '
c. 4

 50. Which d o e s n o t r e p r e s e n t a P a sc a l r e s e rv e d w ord?
a . W riteL n d . b e g in
b. p rog ram e . A ll a r e r e s e r v e d w ords.
c . v a r

 51. The e f f e c t o f th e fo llo w in g program segm ent c a n b e s t be d e s c r ib e d a s
i f X > Y th e n Z
i f X = Y th e n Z
i f X < Y th e n Z

= X;
0 ;
Y;

a . The s m a lle r o f X and Y i s s to r e d in Z.
b . The l a r g e r o f X and Y i s s t o r e d in Z.
c . The l a r g e r o f X and Y i s s to r e d in Z, u n l e s s X and Y a r e e q u a l , in w hich

c a s e Z i s a s s ig n e d z e ro .
d . The l a r g e r o f X and Y i s s to r e d in Z, u n le s s X and Y a r e n o t e q u a l , i n

w hich c a s e Z i s a s s ig n e d z e ro .
e . None o f t i .? ab o v e .

52. A u n iq u e v a lu e t h a t can b e u se d t o t e r m in a te a lo o p c o n ta in in g a ReadLn
s ta te m e n t i s c a l l e d a
a . te r m in a l v a lu e .
b . s e n t i n e l v a lu e .
c . lo o p c o n t r o l v a r i a b l e .
d . in p u t v a lu e .
e . lo o p te r m in a t io n v a lu e .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

169

53. Which o£ Che tollowing types cannot be the type of a counter variab le in a for
loop?
a. Integer d. Enumerated
b. Real e . Boolean
c. Char

54. If N is an Integer variable and 11 >= 10, then the expression whose value is N's
tens d ig it (for example, 3 if N = 436) is
a. N div 10 mod 10 d. N mod 100
b. N - 10 e. N mod 10 mod 10
c. N - 9

55. What does th is program do?

S := 0; I := 1;
repeat

S := S + I;
I := I + 1

u n til I >= N;

a. Add a l l numbers from 1 to N.
b. Add a l l the numbers from 1 to N-l.
c. Add the even numbers from 1 to N.
d. Add Che odd numbers from 1 to N.
e. None of Che above.

56. Which of the following variable names are invalid?

i . Write i i . abcD3 i i i . var lv. John's
v. Scount v i. abcte v ii . crazy8s

a. i , i i , i i i , v, vi
b. i , i i , iv, v, vi
c. i i i , v
d. i , i i i , iv , v
e. i i i , iv, v, vi

57. The if statement

if 13 < 12 then WriteLn ('never')
e lse WriteLn ('always')

a. Writes 'n ever'.
b. Writes 'alw ays'.
c. Won't compile since 13 is not le ss than 12.
d. Causes a run-time error since 13 is not less than 12.
e. P rin ts nothing since 13 is not less than 12.

56. Which of the following types cannot be the element type of an array?
a. Integer d. Boolean
b. Real e. None of the above
c. Enumerated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

170

59. What would be printed by the following program? (The symbol '*• stands for one
blank character.)

program Formats:
var

A, B :Real ;
begin

A := 37.56
B := 101.117;
Write CIS i t ' , A :6:1, B :9:4) :
WriteLn ('? ')

end

a. Is*it#*37.6*101.1170?
b. Is*it*»«37.6**101.1170?
c. Is»it*#37.5*101.1170?
d. Is*it*»37.6*101.117?
e. None of the above

60. Which of the types lis te d below can be returned as the value of a user-defined
function?
a. Integer d. Enumerated
b. Real e . All of these
c. Char

61. Given the binary tree below, what is the order in which the nodes would be
v is ited during a preorder traversal?

C
/ \

A F
\ / \
B E G

/
D

a. A B C D E F G
b. B A D E C F C
c. C A B F E G D
d. C A B F E D G
e. None of the above.

62. Which of the following can not be an element type of a two-dimensional array?
a. another two-dimensional array
b. a hierarchical record
c. a Real
d. an enumerated type
e. None of the above

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

171

 64

Consider the following program:
program HowAboutThis (input,output);

type
X = (A, B, C, D, Z) ;

var
R.S : X;
T : Integer;

begin
T := 0; R := A; S :s C;

while R <> S do
begin

R := Succ(R);
T := Pred(T)

end; (while)
WriteLn (T); (question 63)
WriteLn (Ord(S)) { question 64)

end.
According to the standard rules for Pascal, what value w ill be printed by
WriteLn (T) ?
a. 0 d. 3
b. 5 e. 2
c. -2
According to the standard rules for Pascal, what value w ill be printed by
WriteLn (Ord(S)l ?
a. 2 d. 0
b. A e. 3
c . 1

Assume the following declarations:
type

Range = 1 . .Max,
Arrayiype = array (Range] of Integer;

var
A : ArrayType;
I, J , Temp : Integer;

What is the effect of the following program segment?

Temp ;= 0;
for I := 2 to Max do

if A[I) > A(l] then
Temp := Temp ♦ 1;

a. Reverses the numbers stored in the array.
b. Puts the largest value in the la s t array position .
c. Counts the number of elements of A greater than i t s f i r s t element.
d. Arranges the elements of the array in increasing order.
e . None of the above

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

172

66. What is the value of Che assignment A := F(3,3,4) ?

function F (A.B.C : Integer) : Integer;
var

I, J , K, L : Integer;
begin (F)

L : = 0:
for I := 1 to A do

begin
for J ;= B downto 4 do

L : = L -t J ;
for K := 3 to C do

L : = L + k
end; { for I)

F := L
end; (F)

a. 28 d. 33
b. 30 e. None of these
c. 21

67. The emacs key binding for sc ro ll to next screen is :
a. C-n d. C-p
b. M-n e. none of these
c. C-v

68. The emacs key binding for search forward is :
a. M-s d. C-s
b. C-g e. none of these
c. C-r

Consider the following declarations:

type
Fruit = (Apple, Orange, Kiwi, Banana);

var
X : array 11..5, F ru it] of in teger;

69. The statement X(4, Orange] : = 12 causes
a. Che value 12 to be placed in the second column of the fourth row of X.
b. the value of 12 to be placed in the second row of the fourth column of X.
c. a compilation error.
d. run-time erro r, a f te r compiling correctly .
e. none of the above.

70. The person who is known as the f i r s t programmer is :
a. Charles Babbage d. Blaise Pascal
b. Herman H ollerith e. Niklaus Mirth
c. Ada Augusta Lovelace

Use the function below;

begin (Wow)
if M < 10 then

if N < 10 then Wow := M + N
else Wow WowIM, N - 2) + N

else Wow := Wow(M - 1. N) + M
end; (Wow)

71. What is the value of Wow(12,15)7
a. 84 d. 18
b. 90 e. none of these
c. 75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

173

72. The terminating condition is :
a. M and N equal to 10 d. M less than 10
b. M and N less than 10 e. N less than 10
c. M or N less than 10

73. Which of the following types cannot be the subscript type of an array?
a. Integer d. Boolean
b. Real e. None of the above
c. Enumerated

74. The person who was responsible for the Difference Engine and the Analytical
Engine is :
a. Charles Babbage d. Blaise Pascal
b. Herman H ollerith e. Niklaus Wirth
c. Ada Augusta Lovelace

75. Which statement is true about recursion?
a. Recursion is more e ff ic ien t than ite ra tio n .
b. Recursion requires less overhead than Ite ra tio n .
c. Recursion can specify more natural solutions for some problems than

ite ra tio n .
d. Recursive solutions are more complex them ite ra tiv e solutions.
e. None of the above.

76. For what exact range of values of variab le X does the following code segment
p rin t 'C'y

if X <= 200 Chen
if X < 100 then

if X <= 0 then WriteLn ('A ')
else WriteLn C B ')

else WriteLn ('C ')
e lse WriteLn I 'D’)

a. 0 < X < 100 d. X > 200
b. X <= 0 e. 100 < X <= 200
c. 100 <= X <= 200

 77. The function below can best be described as

function What (Head : Ptr; X : Integer) : Ptr;
var

Temp : Ptr;
begin (What)

What := n il;
while Head <> n il do
begin

if Head*'.Data = X then
What : = Head;
Head := Head'.Link

end (while)
end; (What)

a. returning a l l of the addresses in the l i s t where X was found.
b. returning a pointer to the f i r s t occurrence of X in the l i s t , and n il if

X does not occur.
c. returning a pointer to the la s t occurrence of X in the l i s t , and n il if

X does not occur.
d. counting the number of occurrences of X in the l i s t .
e. none of the above.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

174

 78. Which of the following types cannot be the element type of a one-dimensional
array?
a. Integer d. Boolean
b. Real e. None of the above
c. Enumerated

 79. The correct statements to in se rt a node containing 3 at the front of the linked
l i s t Head is :
a. New (Temp);

Temp'' .Data := 3;
Temp".Link : = Head;
Head := Temp;

b. New (Temp);
Temp".Data := 3;
Head : - Temp;
Temp*.Link := Head;

c. New (Temp);
Temp*.Data := 3;
Temp*.Link ;= Head".Link;
Head := Temp;

d. New (Temp);
Temp*.Data := 3;
Temp*.Link := Head".Link;
Head*.Link := Temp;

e. none of the above

Given the declaration

type
Date = record

Month : 1..12;
Day : 1. .31;

end; (Date)
Address = record

Street, City. : string |30];
end; (Address)

EmpRec = record
StartDate : Date;
Home : Address;
Salary : Real

end; (ESnpRec)
var

Employee : EmpRec;

 80. Which of the following is not equivalent to the others?
a. WriteLn (Employee.Home.Street,Employee.StartDate.Month);
b. with Employee do

WriteLn (Home.Street, StartDate.Month);
c. with Employee, Home, StartDate do

WriteLn (S treet, Month);
d. with Employee do

with StartDate do
with Home do

WriteLn (Street, Address);
e. All of the above are equivalent.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

175

81. (12 points) The adm inistration a t a co llege keeps a master f i l e , on disk, of a l l
current and former students. There is a record for each individual, but d ifferen t
information Is kept depending on whether the person is current or former. The
information for a current student is name, soc ial security number, school address,
home address, GPA, and number of library'books currently checked out. The information
for a former student is name, social security number, address, and to ta l amount of
money contributed to the college. After each graduation, the adm inistration of the
college wants to update the master f i l e with a transaction f i le , also kept on disk,
that contains a record for each student th a t ju s t graduated. Assume that both f ile s
are kept sorted by social security number. Use your problem-solving s k il ls to design
a program to perform the necessary update.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

176

82. <1 points) Consider th is program:

1 .
2 .
3.
i .
5.
6 .
7.
8 .
9.

1 0 .
1 1 .

program te s t;

procedure change (. . .) ;

var
A : intarray;
i : integer;

type
intarray = array[1..10) of integer;

begin
i ••= 5;
A[i] : = 20

end;
12. begin
13. for i : = 1 to 10 do A(i] : = i;
14. i := 3 ;
15. change!A, i) ;
16. write(AIi))
17. end.

What i s the output of th is program when lin e 7 is equal to each of the following:

a) procedure change(var A : in tarray; var i : in te g e r) ;

b) procedure change(var A : in tarray; i : in teger);

c) procedure changelA : in tarray ; var i : in teger);

d) procedure changelA : in ta rray ; i : in teger);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

177

83. (4 points) Consider th is program:

1. program test;
2. type
3. ptr = "node;
4. node = record
5. data : integer;
6. next : ptr
7. end;
8. var
9. p : Ptr;
10. n : node;
11. procedure change (...);
12. begin
13. p'.data :s 3;
14. new(p);
15. n.next : = p
16. end;
17. begin
18. n.data : = 1;
19. new(p);
20. p".data := 2;
21. p*.next := nil;
22. n.next : = p.
23. change(n,p)
24. end.
This problem asks you to draw diagrams indicating space allocation . Here are the
ru les: Draw a box for each location tha t is currently allocated to the program and
label i t with i t s name or names. Put the current value of the location inside the
box, using •?■ for u n in itia lized and arrows for pointers.

Draw a space a llocation diagram for the point in the program imnediately a f te r lin e
23, for each of the following choices for lin e 11. I t w ill probably be helpful if you
s ta r t by drawing the diagram for the point ju s t before line 23. You may draw the
diagrams in the blank space above, to the righ t of the program. (Be sure to label
them.)

a) procedure change(var n : node; var p : p tr) ;

b) procedure change(var n : node; p : p tr) ;

c) procedure change(n : node; var p : p tr) ;

d) procedure change(n : node; p : p tr) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

178

81. (5 points) Give the web-mode key bindings for the following commands.

a) goto section t

b) which section

c) goto next section

d) count sections

e) k i l l eroacs from web-mode

85. (15 pointsl For th is part of the te s t , use the attached copy of primes.web to answer
the following questions.

a) Give the name of section 8.

b) In what section(s) is "Other constants of the program" defined? In what
sections is i t used?

c) In what section does the chapter "Generating the primes" begin?

d) Chapter 5 begins in section _________ and goes through s e c tio n ________.

el in what modules is the variable 'page-offset* used, and what type is it?

f) What sections are used in section 14?

g) How many sections does primes.web have?

h) How many chapters does primes .web have?

i) In which section(s) does the programmer discuss the format of the output?

j) What section(s) need(s) to be modified i f you want to prin t the f i r s t 500 prime
numbers?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

179

PRIMES

(M arch 31, 1986)
Section Page

Printing primes: An example of UEB 1 1
Plan of the program .. 3 2
The output phase .. 5 3
Generating the primes .. 11 5
The inner loop... 22 7
Index 27 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

180

§1 PRIMES PRINTING PRIMES: AN EXAMPLE OF WEB 1

1. Printing primes: An example of UEB. The following program is essentially the same as
Edsger Dijkstra’s “first example of step-wise program composition,” found on pages 26-39 of his
Notes on Structured Program ming,3 but it has been translated into the UEB language.
(Double brackets will be used in what follows to enclose comments relating to UEB itself, because

the chief purpose of this program is to introduce the reader to the UEB style of documentation.
UEB programs are always broken into small sections, each of which has a serial number; the present
section is number 1.]
Dijkstra’s program prints a table of the first thousand prime numbers. We shall begin as he

did, by reducing the entire program to its top-level description. [Every section in a UEB program
begins with optional commentary about that section, and ends with optional program text for the
section. For example, you are now reading part of the commentary in §1, and the program text for §1
immediately follows the present paragraph. Program texts are specifications of PASCAL programs;
they either use PASCAL language directly, or they use angle brackets to represent PASCAL code
that appears in other sections. For example, the angle-bracket notation ‘(Program to print ...
numbers 2)’ is UEB’s way of saying the following: “The PASCAL text to be inserted here is called
'Program to print... numbers’, and you can find out all about it by looking at section 2.” One of
the main characteristics of UEB is that different parts of the program are usually abbreviated, by
giving them such an informal top-level description.]
{Program to print the first thousand prime numbers 2)

2. This program has no input, because we want to keep it rather simple. The result of the program
will be to produce a list of the first thousand prime numbers, and this list will appear on the ovtput
file.
Since there is no input, we declare the value m = 1000 as a compile-time constant. The program

itself is capable of generating the first m prime numbers for any positive m, as long as the computer's
finite limitations are not exceeded.
[The program text below specifies the “expanded meaning” of‘(Program to print... numbers 2)’;

notice that it involves the top-level descriptions of three other sections. When those top-level
descriptions are replaced by their expanded meanings, a syntactically correct PASCAL program
will be obtained.)
(Program to print the first thousand prime numbers 2) =
program prin t.p rim cs(ovtpvt);
const m = 1000; (Other constants of the program s)
var (Variables of the program 4)
begin (Print the first m prime numbers 3);
end.

This code it used in section 1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2 PLAN OP THE PROGRAM PRIMES $3

3. Plan of the program. We shall proceed to fill out the rest of the program by making
whatever decisions seem easiest at each step; the idea will be to strive for simplicity first and
efficiency later, in order to see where this leads us. The final program may not be optimum, but we
want it to be reliable, well motivated, and reasonably fast.
Let us decide at this point to maintain a table that includes all of the prime numbers that will be

generated, and to separate the generation problem from the printing problem.
[The UEB description you are reading once again follows a pattern that will soon be familiar: A

typical section begins with comments and ends with program text. The comments motivate and
explain noteworthy features of the program text.]
(Print the first m prime numbers 3) =
(Fill table p with the first m prime numbers it);
(Print table p 8)

This code it uecd in section 2.

4. How should table p be represented? Two possibilities suggest themselves: We could construct
a sufficiently large array of boolean values in which the tth entry is true if and only if the number k
is prime; or we could build an array of integers in which the fcth entry is the tth prime number. Let
us choose the latter alternative, by introducing an integer array called p[l .. m].
In the documentation below, the notation ‘p[t]’ will refer to the Jblh element of array p, while ‘pi’

will refer to the k th prime number. If the program is correct, p[ir] will either be equal to p* or it
will not yet have been assigned any value.
[Incidentally, our program will eventually make use of several more variables as we refine the

data structures. All of the sections where variables are declared will be called '(Variables of the
program <)’; the number V in this name refers to the present section, which is the first section to
specify the expanded meaning of'(Variables of the program)’. The note ‘See *Uo ...’ refers to all of
the other sections that have the same top-level description. The expanded meaning of ‘(Variables
of the program 4}’ consists of all the program texts for this name, not just the text found in $4.]
(Variables of the program 4) =
p: array [1 .. m] of inlcser; {the first m prime numbers, in increasing order}
Set alio uclioni 7 ,12 , 15, 17, 23, and 24.
Thii code it lued in tection 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

PBIMES THE OUTPUT PHASE 3

5. The output phase. Let’s work on the second part of the program first. It’s not as interesting
as the problem of computing prime numbers; but the job of printing must be done sooner or later,
and we might as well do it sooner, since it will be good to have it done. [And it is easier to learn
WEB when reading a program that has comparatively few distracting complications.)
Since p is simply an array of integers, there is little difficulty in printing the output, except that

we need to decide upon a suitable output format. Let us print the table on separate pages, with rr
rows and cc columns per page, where every column is uus character positions wide. In this case we
shall choose rr = 50, cc = 4, and ww = 10, so that the first 1000 primes will appear on five pages.
The program will not assume that m is an exact multiple of rr ■ cc.
(Other constants of the program s) =
rr = 50; {this many rows will be on each page in the output}
cc = 4; {this many columns will be on each page in the output}
ww — 10; {this many character positions will be used in each column }

Sec *lao section 19.
This code is used in section 2.

6. In order to keep this program reasonably free of notations that are uniquely PASCALesque,
[and in order to illustrate more of the facilities of UEB,] a few macro definitions for low-level
output instructions are introduced here. All of the output-oriented commands in the remainder
of the program will be stated in terms of five simple primitives called p rin L str in g , print.integer,
p n n t.e n tr y , new .line, and new.page.
[Sections of a UEB program are allowed to contain macro definitions between the opening comments

and the closing program text. The general format for each section is actually tripartite: commentary,
then definitions, then program. Any of the three parts may be absent; for example, the present
section contains no program text.)
[Simple macros simply substitute a bit of PASCAL code for an identifier. Parametric macros are

similar, but they also substitute an argument wherever occurs in the macro definition. The first
three macro definitions here are parametric; the other two are simple.]
define p n n tM rin g (») = w ritc{ t) { put a given string into the output file]
define j>rinLin<eyer(«) = write (» : 1) { put a given integer into the output file, in decimal

notation, using only as many digit positions as necessary)
define p rin t.e n try ($) = w r i t e (t : ww)

{like prin t.in teger, but ww character positions are filled, inserting blanks at the left}
define new.line = w riteJn { advance to a new line in the output file }
define new.page = page { advance to a new page in the output file }

7. Several variables are needed to govern the output process. When we begin to print a new page,
the variable page.number will be the ordinal number of that page, and page.offset will be such that
p[page.offset] is the first prime to be printed. Similarly, p[n)iv.ô sef] will be the first prime in a
given row.
[Notice the notation ’+ = ’ below; this indicates that the present section has the same name as a

previous section, so the program text will be appended to some text that was previously specified.]
(Variables of the program 4) +=
page.num ter: integer; { one more than the number of pages printed so far }
page.offset: integer; {index into p for the first entry on the current page}
ro w .o ffs tt: integer; {index into p for the first entry in the current row }
c: 0 .. cc; {runs through the columns in a row }

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

183

4 THE OUTPUT PHASE PRIMES §8

8. Now that appropriate auxiliary variables have been introduced, the process of outputting table p
almost writes itself.
(Print table pt) =
begin page.num ter «- 1; page.offset <— 1;
while page.offset < m do
begin (Output a page of answers 9);
page.num ter page.num ter + 1; page.offset «— page.offset + rr * cc\
end;

end
TUs code is used in section 3.

9. A simple heading is printed at the top of each page.
(Output a page of answers 9) =
begin prin i.string('ThSuFiratu'); prin t.in teger (m)\
pnnt.s<nny('uPriafluluabarsu— uP“g*u'); prtnt.integer(page.num ter)-, new.line-, new .line;

{there’s a blank line after the heading}
for row.offset •— page.offset to page.offset + rr — 1 do (Output a line of answers to);
new.page;
end

This code U u*ed in eection 8.

10. The first row will contain

p[l],p(l+ rr], p[l + 2*rr],...;

a similar pattern holds for each value of the row .offset.

(Output a line of answers to) =
begin for c •— 0 to cc - 1 do
if row.offset + e * rr < m then prini.entry(p[row .offset +c* rr]);

new .line;
end

This code is used in section 9.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

PRIMES GENERATING THE PRIMES 5

11. Generating the prime*. The remaining task is to fill table p with the correct numbers.
Let us do this by generating its entries one at a time: Assuming that we have computed all primes
that are j or less, we will advance j to the next suitable value, and continue doing this until the
table is completely full.
The program includes a provision to initialise the variables in certain data structures that will be

introduced later.
(Fill table p with the first m prime numbers II) =
(Initialize the data structures 16);
while k < m do
begin (Increase j until it is the next prime number 14);
k — k + 1; p[i]«- j;
end

This code is used in section 3.

12. We need to declare the two variables j and k that were just introduced.
(Variables of the program 4) +=
j : integer; { all primes < j are in table p}
k: 0 .. m; { this many primes are in table p)

13. So far we haven’t needed to confront the issue of what a prime number is. But everything else
has been taken care of, so we must delve into a bit of number theory now.
By definition, a number is called prime if it is an integer greater than 1 that is not evenly divisible

by any smaller prime number. Stating this another way, the integer j > 1 is not prime if and only
if there exists a prime number p„ < j such that j is a multiple of p„.
Therefore the section of the program that is called ‘(Increase j until it is the next prime number)’

could be coded very simply: 'repeat j «— j + 1; (Give to j.p r im e the meaning: j is a prime
number); until j.p r im e '. And to compute the boolean value j.p r im e, the following would suffice:
‘j.p r im e «— Inc; for n «- 1 to k do (If p[n] divides j , set j.p r im e — false)’.
14. However, it is possible to obtain a much more efficient algorithm by using more facts of
number theory. In the first place, we can speed things up a bit by recognizing that pi = 2 and that
all subsequent primes are odd; therefore we can let j run through odd values only. Our program
now takes the following form:
(Increase j until it is the next prime number u) =
repeat j * - j + 2; (Update variables that depend on j so);
(Give to j.p rim e the meaning: j is a prime number 22);

until j.p r im e
ThU code u used in section 11.

15. The repeat loop in the previous section introduces a boolean variable j.p r im e, so that it will
not be necessary to resort to a goto statement. (We are following Dijkstra,3 not Knuth.3)
(Variables of the program 4) +=
j.p r im e: boolean; {is j a prime number?}

16. In order to make the odd-even trick work, we must of course initialize the variables j , k, and
p[l] as follows.
(Initialize the data structures 16) =

j r . 1; i *— 1; p[l) *— 2;
See *Uo Motion 18.

T h u co d e i t lifted in te c tio n 11.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6 GENERATING THE PRIMES PRIMES $17

17. Now we can apply more number theory in order to obtain further economies. If j is not prime,
its smallest prime factor p„ will be s / j or less. Thus if we know a number ord such that

p[ord]J > j,

and if j is odd, we need only test for divisors in the set (p[2) p[onf-l]}. This is much faster than
testing divisibility by {p[2],.. .,p[k]), since ord tends to be much smaller than k. (Indeed, when k
is large, the celebrated “prime number theorem” implies that the value of ord will be approximately
2 y /ic jin k .)
Let us therefore introduce ord into the data structure. A moment’s thought makes it clear that

ord changes in a simple way when j increases, and that another variable square facilitates the
updating process.
(Variables of the program s) +=
ord: 2 .. ord-m az; {the smallest index > 2 such that p \rd > ; }
square: integer-, { square = p \ri }

18. (Initialize the data structures ie) +=
ord *— 2; square • - 9;

19. The value of ord will never get larger than a certain value ord .m a z, which must be chosen
sufficiently large. It turns out that ord never exceeds 30 when m = 1000.
(Other constants of the program 5) +=

ord.m az = 30; { p^rfjn0I must exceed pm }
20. When j has been increased by 2, we must increase ord by unity when j = p’rd, i.e., when
j — square.

(Update variables that depend on j 20) =
if j — square then
begin ord «— ord -f 1; (Update variables that depend on ord 21);
end

This code is used in section M.

21. At this point in the program, ord has just been increased by unity, and we want to set
sjusre := p]rd. A surprisingly subtle point arises here: How do we know that p„d has already
been computed, i.e., that ord < 1? If there were a gap in the sequence of prime numbers, such
that pi+i > p i for some k , then this part of the program would refer to the yet-uncomputed value
p(i + 1] unless some special test were made.
Fortunately, there are no such gaps. But no simple proof of this fact is known. For example,

Euclid’s famous demonstration that there are infinitely many prime numbers is strong enough to
prove only that p*+j <= pi.. .p t + 1. Advanced books on number theory come to our rescue by
showing that much more is true; for example, “Berlrand’6 postulate” stales that pt+] < 2p* for
all I.
(Update variables that depend on ord 21) =

square «- p[ord] * p[ord]; { at this point ord < k)
See also Kclion 25.
This code i« used in section 20.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

522 PRIMES THE INNER LOOP 7

22. The inner loop. Our remaining task is to determine whether or not a given integer j is
prime. The general outline of this part of the program is quite simple, using the value of ord as
described above.
(Give to j .p r im e the meaning: j is a prime number 22) =
n «— 2; j .prime «- true;
while (n < orrf) A /.prime do
begin (If p[n] is a factor of j , set j-prim e *- false 26);
n «- n + 1;
end

T hu code is used in section 14.

23. (Variables of the program) 4) +=
n: 2 .. ordLmsz; (runs from 2 to ord when testing divisibility)

24. Let’s suppose that division is very slow or nonexistent on our machine. We want to detect
nonprime odd numbers, which are odd multiples of the set of primes {p:,... .Pori).
Since orrLmax is small, it is reasonable to maintain an auxiliary table of the smallest odd multiples

that haven't already been used to show that some j is nonprime. In other words, our goal is to
“knock out” all of the odd multiples of each pn in the set {pj,. . . , p ord) , and one way to do this is
to introduce an auxiliary table that serves as a control structure for a 6el of knock-out procedures
that are being simulated in parallel. (The so-called u6ieve of Eratosthenes" generates primes by a
similar method, but it knocks out the multiples of each prime serially.)
The auxiliary table suggested by these considerations is a mult array that satisfies the following

invariant condition: For 2 < n < ord, mu(f[n] is an odd multiple of p„ such that mu/l[n] < j + 2p„.
(Variables of the program 4) +=
mult: array [2 .. ord.maz] of integer-, {runs through multiples of primes}

25. When ord has been increased, we need to initialize a new element of the mult array. At this
point j = p[ord — l}2, so there is no need for an elaborate computation.
(Update variables that depend on ord 2i) +=

m ult [ord - 1] *— j;

26. The remaining task is straightforward, given the data structures already prepared. Let us
recapitulate the current situation: The goal is to test whether or not j is divisible by pn, without
actually performing a division. We know that j is odd, and that mu/t[n] is an odd multiple of p„
such that mu/f[n] < j -f 2p„. If mu/([n] < j , we can increase muf([n] by 2p„ and the same conditions
will hold. On the other band if mu/l[n] > j , the conditions imply that j i6 divisible by p„ if and
only if j = mu/([n],
(If p[n] is a factor of j , set j .p r im e •— false 26) =
while m«f([n] < j do miill[n) «— mu/([n] + p[n] + p[n);
if mul([n] = j then j.p rim e *- false

Thia code ia uaed in section 22.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

8 INDEX PRIMES §27

27. Index. Every identifier used in this program is shown here together with a list of the section
numbers where that identifier appears. The section number is underlined if the identifier was defined
in that section. However, one-letter identifiers are indexed only at their point of definition, since
such identifiers tend to appear almost everywhere. [An index like this is prepared automatically by
the WEB software, and it is appended to the final section of the program. However, underlining of
section numbers is not automatic; the user is supposed to mark identifiers at their point of definition
in the WEB source file.]
This index also refers to some of the places where key elements of the program are treated. For

example, the entries for 'Output format’ and ‘Page headings’ indicate where details of the output
format are discussed. Several other topics that appear in the documentation (e.g., ‘Bertrand’s
postulate’) have also been indexed. [Special instructions within a WEB source file can be used to
insert essentially anything into the index.]
Bertrand, Joseph, postulate: 21.
ioolean: 15.
e: 1
ee: g, 7, 8, 10.
Dijkstra, Edsger: 1, 15.
Eratosthenes, sieve of: 24.
false: 13, 26.
integer: 4, 7, 12, 17, 24.
} ■ 12-

j .p r im e: 13, 14, 25, 22, 26.
k: 12.
Knuth, Donald E.: 15.
m: 2-
m ult: 24. 25, 26.
n; 22-
new .line: 6, 0, 10.
new.page: g, 9.
ord: 12, 16, 19, 20, 21, 22, 23, 24, 25.
ord.m az: 17, 12, 23, 24.
output: 2, 6.
output format: 5, 9.
p: 1
page: 6.
page headings: 9.
page.number: 2. 6, 9.
page .o ffse t: 2. 8, 9.
prime number, definition of: 13.
prin t.en try: g, 10.
prini.in teger: g, 9.
print.prim es: 2-
prin t.s tr ing: g, 9.
rote-offset : 2. 8. 10.
rr: g, 8, 9, 10.
sftiane: 12, 18, 20, 21.
true: 4, 13, 22.
WEB: 1.
write: 6.
w rite J n : 6.
ww: g, 6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

527 PRIHES NAMES OF THE SECTIONS

(Fill tab le p with the first m prim e num bers 11) Used in section 3.
(Give to j .p r im e the meaning: j is a prim e num ber 22) Used in section n .
(If p[n] is a factor o f j , set j.p rim e «- fa h e 36) Used in section 22.
{ Increase j until i t is the next prim e num ber 14) Used in section n .
(Initialise tbe d a ta structures is, 18) Used in section n .
(O ther constants o f the program fi, 19) Used in section 2.
(O u tp u t a line o f answers 10} Used in section 9.
(O u tp u t a page of answers 9) Used in section 8.
(P rin t table p s) Used in section 3-
(P rin t tbe first m prime num bers 3) Used in section 2.
(Program to print the first thousand prim e num bers 2) Used in section 1.
(Update variables that depend on j 20) Used in section 14.
(U pdate variables th a t depend on ord 21, 21) Used in section 20.
{ Variables o f the program 4, 7, 12,15, 17, 23, 24) Used in section 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

189

APPENDIX B

OVERALL COURSE STATISTICS

This appendix contains the actual numbers for the distribution tables which were

presented in the text.

Table 25 is a summary of the student classification distribution for the CS/1 course for

the subject and comparison classes.

Table 25. Student Distribution by Classification (Actual)

Semester U1 U2 U3 U4 Total
Fall 90-H 28 6 1 1 36
Fall 92-H 29 7 6 0 42
FaU 93-H 26 11 0 1 38

Table 26 is a summary of the student major distribution for the CS/1 course for the

subject and comparison classes.

Table 26. Student Distribution by Major (Actual)

Semester CPSC/CSEN Other Total
Fall 90-H 20 16 36
FaU 92-H 25 17 42
FaU 93-H 29 9 38

Table 27 is a summary of the overall grade distribution for the CS/1 course for the

subject and comparison classes.

Table 28 is a summary of the computer science major grade distribution for the CS/1

course for the subject and comparison classes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

190

Table 27. Overall Grade Distribution (Actual)

Semester A B C D F Other Total
Fall 90-H 7 17 5 2 3 2 36
Fall 92-H 20 8 8 1 2 3 42
Fall 93-H 9 15 8 2 3 1 38

Table 28. Grade Distribution for CPSC/CSEN Majors (Actual)

Semester A B C D F Other Total
Fall 90-H 4 11 2 1 2 0 20
Fall 92-H 12 4 5 1 2 1 25
Fall 93-H 8 9 7 2 2 1 29

Table 29 is a summary of the non-computer science major grade distribution for the

CS/1 course for the subject and comparison classes.

Table 29. Grade Distribution for Other Majors (Actual)

Semester A B C D F Other Total
Fall 90-H 3 6 3 1 1 2 16
Fall 92-H 8 4 3 0 0 2 17
Fall 93-H 1 6 1 0 1 0 9

Table 30 is a summary of the overall grade distribution for the subsequent CS/2 course

for those students in the subject and comparison classes.

Table 31 is a summary of the overall grade distribution for the Data Structures course

for those students in the subject and comparison classes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

191

Table 30. Overall CS/2 Grade Distribution (Actual)

Semester A B C D F Other Total
Fall 90-H 17 7 1 0 0 0 25
Fall 92-H 19 5 2 0 0 1 27
Fall 93-H 13 10 1 0 1 0 25

Table 31. Overall Data Structures Grade Distribution (Actual)

Semester A B C D F Total
Fall 90-H 4 12 3 0 0 19
Fall 92-H 11 3 5 2 1 22
Fall 93-H 9 6 2 0 0 17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

192

APPENDIX C

INDIVIDUAL COURSE STATISTICS

This appendix consists of the individual statistics for the CS/1 classes upon which

much of the validation is based.

The first 14 pages are the information for the students enrolled in the comparison

classes. The first set of statistics (8 pages) is for the Fall 1990 honors class. This is

followed by the information for the students enrolled in the Fall 1992 honors class (6

pages).

The remaining 8 pages are the information for the subject class which is made up of

those students enrolled in the Fall 1993 honors class.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C
om

pu
te

r
Sc

ie
nc

e
11

OH
-

Fa
ll

19
90

193

m i ^
£ Q.

!!§

. 03
i | o

O. 5>

f f e
^ 8 sr
1 5 S2 o

CO CM O C O (O O N S M N (D N O O) U) U) U) C O O) C)
i n i o i n c o i n i o i n c o M ’ i n i o i n p i o i O M - M - i n

▼- P CM M* lO CD CO 5 ^ l f l S O ! CO Wtf) M- "M* 10 in lO

_ PC M CM 03 CD © CO O 03 CD CM S 03 UJ O) W CD S
o *3 = n m s s s co co oo © co co co co co m- s co w s s m
r e g

i l i2

rK lfl^cpn
CO N- CO CD S CO

P IQ CM P K CM
CO CO CO CO h* CO

o I
- S "

o I
T* ®CM

ID O
S CD

CMO)^SCMCMh.ONONNVONT»BCON
S C O S S C O C O C O © C D ® N C O P S © I O C O N C D

r lO ® 0 (0 ^
N CO N CO IO N

© © N IQ 0 3 IO
in co cd oo co

CD CD O T - ^ S ® l O O O O) N p C O K C O O) C M O) S N
N S e O S C O P C O C O S C O C D S S P P P C O S C O C O C O

v-’f-®^pinapco©in©sco
© C O S C O S P ^ l O S S O C O S

00 S
CO CO

^-rW^WOCMNOCONOOWOWSWa r-oa^^^-ococoo>eo^-io
© ® ® © ® S © © S © ® © l D © © C O © © S 0) 0 3 N 0 6 0 0 U 3 t t O O N S O) 0)

u>
C 03

a s
w<
_ ca

o 8 Eo CO

"■i2 a

s s o N s c o o s o o s K n o N n N K s n o o o o s n n o o s o o N N s n © sd sp o S d s ir id s d p ^ C M p d c D ^ d s ^ o ^ c o c o o s d d c M ^ c o p d ir iio
S C O S S S O S S S GO S CO CO O) M-CO CO CO 03 co s c o s s c o s s c o c o s s c o c o c o

q c o p q p o o o o q q p q o q q o o q q o p p o c j o q o o o o o o o o
dcodcoT -iedcpd iosdcM ddcdd^d io^^coddcddcddscoco^W dscd
P O P C M P t O P C M P C O - i - l O ^ S P I O C D C O S C O * - — ---— • - • -
CM CM CMCMCMCMCMCMCMCMCMCMCMCMT-CMCM^-CMCMCM

M - C O P O f - P O C O C O C N C D I O l O
CM CM CM CM CM CM CM CM CM CM CM

a
o t- t- ^ ^ t- t- t-CMt-CMCMCMCM̂"̂ "*“ ^, *“ ,*“ “̂ CM^^~^^t-^'*,**“ ^“^ P ^ ^ t— 3 D r 3 D 3 3 D 3 3 3 3 3 3 3 3 D D 3 3 3 3 D 2 D 3 3 3 3 3 3 D 3 3 3 3

5“CM9 t in9 S 9 03
o CMT~P inCDT“s ©T*03 o

CM CM
CM
CM

P
CM CM

X

in
CM

CD
CM

s
CM

CO
CM *9

o
p

T“
9

CM
C?

p
9 p

in
c ?

CO
p

Xx I X XXXXX XXXX XXXXXX XXXX X XXXXX XX XXX X©o o o o o o o o o o ©o o o o o o o ©o o o o o ©o o o o o o o o o o
0) 03 ©03 03 03 03 03 03 03 03 03 03 03 03 03 03 ©03 03 03 03 © o > 03 ©©© © 03 03 © ©© © ©p P p CO P P P P P P P P P P P P P p P P P P p p P P p p p P P p p p p p

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O
ve

ra
ll

A
ve

ra
ge

:
83

.0
6

77
.6

8
70

.5
8

74
.3

9
51

.3
64

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Computer Science 11 OH - Fall 1990

I
I
| C la s s Major
I

Overall S tan d a rd Deviation:
C om p.Sci. A verage:
C om p.Sci. S tan d a rd Deviation:
N on-M ajor A verage:
Non-M ajor S tan d a rd Deviation:

| 110 110 |
j Total Exam j
j E xam s A verage j
I I

110 110 110 | 110 | Multiple D esign Perm . Linked w e b W EB
Exam Exam Exam Final | C hoice Problem P a ss in g Lists m o d e Program

1 2 3 I
j

Exam j (69) (0) (0) (0) (0) (0)

11.0G 12.26 11.53
I

10.81 6 .2852
83 .7 77.6 69.89 76.32 52.211

11.82 11.13 9 .673 7.901 4 .4789
82.14 77 .79 71.5 71.79 50 .214
9 .797 13.71 13.61 13.37 7 .9748

<c>

www.manaraa.com

Co
m

pu
te

r
Sc

ien
ce

11

0H

- F
all

 1
99

0

195

O A

O JO

S o if lc so o io f s n n { d © s o » © S I C b S S t S6222SSS!CN a)0)G0O(00>0)0)D0)0)0)M»0) © © © CO O) CO O) CO O) 0)0)0)00)0)

O CO t-CO ̂ N © CD ID CO CN O CO CD CD© ©©CO©0>CO©©©l‘*-©©h-©© O ^ CO © 0> CD ID K- 00 T- CO CN
0) 0) CO O) O) 0)

CO <in <INMOK ► O) O) O) 05

Tf o o N ^ c o o c o ^ c o M o i o K r $ f i ^ t 2 2? Eb 5 5b 20)00 © © © © C O © © © © © © © © © © 0)0)0) 000)0)0)0)0) 0)0)0)0)00)

c
O .o>

O A
r 3 ' T

o inO) h» aOinoON-OCOID^COCOIOCOCOOCOIOCOCNCNc00)r^0)0>0)0)0>0)c00)0)0>o0)in0)0)0) eowsococococN^oM no0>0)Q00)0)OC00)0)O0>0)0)

c
o .S?

O A co in 0) O) ininoiniocDincoooininininotnooora
0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0 0) 0) 0 0) 0)

c o i n o i n Q i n o c o t o o o i n N0>0)0)0)CD0)CD0)0)OO0)O

co ®*« CO

o .o
O O O O O O I0)0 O O O O (o o o o o o o c o o o c o o o o

0 0 0 0 0 0 0 0) 000)000
o o o m o o o o o o o o o
0 0 0 0) 0 0 0 0 0 0 0 0 0

co O)
'i- *55 CN
T - ®

a

O -G
£J3 '

o o o o
o o o o o t n o o o o o o o o o o o o o
00000)000000000000000

o o o o i n i n o o o o o o o
00000) 0)0000000

o i l
5 5 JQ. <

0) _ e
© CO CO

5=̂ 2 g*
a.

O •M-o 0)h»CO N h-T" CDh-CDCOTT o t- CDo o COm;N o K o 0)0) CDo inCO K CO1̂ N co COcd
s
K 0)K iri o K CM CO

8
o>o K COGO K0)CD 0)O) co 0) co O)0)0)0)O)0)0) 0)O) M*O) © 0) 0)0)0)0)0) 0)O)O)0)O)0)

Oo Oo Oo o o o o o o o Oo o O
d o inGO

s
COd N o CMCDKdCDN- CDCDo T“ KCOCOin K CMCOCO CDCDCOCDCOCDCOCDCDCDCDCDCDCO

o o o o o o o o o o o o o o o o o o o CMCOdcDCMOOidcd̂ CDCvicddCMCMĈ OCO co 9 cp co co l o s v i b i o N ^ n c p ® ® ® ®
CD CO CD CD CD (pcDCDCDCOCDCnCDOCDCDCDCD

CM c? *9<9K op O)
o
T“

t - CM CO in
y -

CO 00
▼-

1
X

0) o
CM CM

CM
CM

CO
CM CM

in
CM
X

CD
CM

h.
CM

CO
CM

©
CM

o
CO

y—
CO

CM
* ?

co in
c ? c? e?

CD
c?

XXXXXXX XX XXX XXXXX XX XXXX XXXXXXXXXX Xo o o o o o o o o © © © o o o o o © o o o o o o o o o ©o © o © © o © o
O) O) 0) O) © O) O) 0) O) 0) O) © O) O) ©©O) O) ©© ©©©©©©©©©© © © © © © ©
CO coCO CO CO CO CO CO CO CO CO CO CO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O
ve

ra
ll

A
ve

ra
ge

:
98

.9
7

99
.2

1
94

.1
5

91
.9

7
94

.1
3

89
.9

90

.5
3

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Computer Science 11 OH - Fall 1990

| 110 110 | 110 110 110
| Total P rogram j Lab D esign Lab
j P ro g ram s
■

A verage j
1

1 2 2
1

Overall S ta n d a rd Deviation:
1

3 .1 5 7 2.055
C om p.Sci. A verage: 99 98.95
C om p.Sci. S tan d a rd Deviation: 3.391 2.479
N on-M ajor A verage: 98 .93 99 .57
Non-M ajor S tan d a rd Deviation: 2 .789 1.116

110
Design

3

110 110 110 110 110 110 110
Lab D esign Lab D esign Lab Lab Lab

3 4 4 5 5 6 7

6.656 8 .435 4 .722 9 .923 14.91
93.6 92.4 94 .78 91 .56 94 .83

8.351 9.281 3.583 10.16 3 .833
94.93 91 .36 93 .29 8 1 .36 85
2.631 7.006 5 .762 24.21 20 .86

co
0 5

www.manaraa.com

C
om

pu
te

r
Sc

ie
nc

e
11

0H

-
Fa

ll
19

90

197

OO
o

I c | ^
! O

o o o o o o o oo o o o o o o oo o o o o o o od r d o d r d o
o © O o o oo o o o o oo o o o o od O r r

o o o o o o
o o o o o o o o o

o o o o oo o o o oo o o o o
Csi o d r o

CO
©

CM § CMa CM 3 CM 3 CM CMy- CM CM
r

CD
CM

CMco CO CM CM CM CM GO00CM CM CM

S N- CM CM h-<Nh»CM CM CM CM ▼-CMo O CM CM CM CM o NCM CM CM
o o«o di o o d 9 o o o o o 9 T® o o o o oi o o o

CM COCMC5CMPCMCOCM CMC0r-CM-*-C0**-C0’*" ▼"CM h-CMCMCMh-CMf̂ CM CM
o d o d d d d d d o

CM CO CM K CO CM CM CM CM
CM ^ © 0) T- T* r t-

CM ^ CM q CM CM CM
o V O • o OOO

t- 00 CM CM CMS-o h» CM CM CMd o d o

CO

o
n N < o s N N- r S S
CO CD CO CD CO co q h - CO
oo cm r*- CM r - CM in CM -M-
d d o d o o o o o o

N N
CO CO CD

CM t *o d d
w
o

« S S K
CO CO CO CO
CO CM
o o o o

V - CM CM CM ^ CM CM CM CM W CM No o o o o o o o o O OO T- o o
CM CM CM U? CM CM CM CM CM CM CM CM ID CM ID
<c <i<:o<:<:<<< < << < < <r r t- v P) r ̂
O) OOOOOOOO) O OO o o o
O O O O O O O O O O O O O O O
O O O O O O O O O o o © o o o
M" CO m* co ^ CO ^ CO M* M" ^ ^ ^ CO

CM •»- CM t- o r N r ro O O O T- o o o oCM CM CM CM in CM CM CM CM
<:<:<: £ <<:<<T- T“ ̂ CM ^ ̂ T-0) 0 0)0) O) O) O 0) O

o O O O o o o o oq o o o o o o q oM* M* M* CO CO * XT

< < <<m C< < < < CD CD<<<

3 &■
F3
CD

o

• 3 • *
• O P OQ-

oT-O)
•4

o O O O o o o o oo O O O o o o o oCO COCOCO COCOCO’d’CMCOCOM*d CO**o M-COCM COCOCMCMCMco o W COCO CO

o E i3 S
" g o
§- ■£ o o o
e _
CL O

0
1

mOOcniDCD<CDCDCD<OCDCD<U.CD<U.<CSOOCDCDOOOCDU.OCDCD<CD<

▼**CM ° ? in 9 K9 9
o «r*CM CO inCD N00O)©

CM CM
CM CO
CM CM CM

m
CM

CO
CM CM

X

CO
CM

o
CM

©
CO

T“
c?

CM
9

CO
9 CO

to
9

CO
CO

x XXX XXXXX XX XXXXXXXXXXX XXXX XX XX XXX XXo o o o o o o o o o o o o o oO)o>O)0) o>O)05CT> O) O)O)O) O)O)O) O)O)O)O)0) O)0) 0) o o>O)O)O)O) 0) O)05050505O)
CO CO CO CO CO CO CO CO CO CO CO CO COCO CO CO CO CO CO CO COCO COCO CO COCO CO CO COCO CO COCO CO CO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ove
ral
l A

ver
age

:
2.6
76

3.64

0.0
243
2

0.0
139

2
0.0

072
8

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Computer Science 110H - Fall 1990

| P rev io u s 110 110
j 110 C o u rse C o u rse
j G rade(s) G rad e P o in ts

Overall S tan d a rd Deviation: 1.13
C om p.Sci. A verage: 2 .7
C om p.Sci. S ta n d a rd Deviation: 1.145
N on-M ajor A verage: 2 .643
Non-M ajor S tan d a rd Deviation: 1 .109

S u b se q u e n t |
110 j

G rade(s) j

120 120 120 Additional I D ifference D ifference D ifference 1 In c re ase
C o u rse C o u rse S e m e s te r S e m e s te rs In In In | In
G rad e P oin ts I■

S ection Instructor S e m e s te r j
i

G rad e

0 .557
I

0.431491 0 .464465
1

0 .47 1 3 0 7 0 .748331
3 .6 6 7 -0 .01194 -0 .02594 -0 .03056 0 .6 6 6 6 6 7
0 .577 0 .430855 0 .428494 0 .4 3 8 5 2 7 0 .8 1 6 4 9 7

2 .5 0 .0823 0 .0815 0 .0732 0.3
1.688 0 .354632 0 .44884 0 .4 4 9 7 4 2 0 .458258

www.manaraa.com

C
om

pu
te

r
Sc

ie
nc

e
11

0H

-
Fa

ll
19

90

199

O < o j

V) ©
3 r- "Oe = e
g e>

o I f

5 g o o°-

O !■§
o O

o
o
o

^ CO
y N*
cm m

M (D i n CO M 1
O N N O S
N; CD r - -O* CO

K CO
T - ©
n - t -

s
o

i n
N*
in

i n n* cd
© © ©
© o in

©
CO
CD

h - o
CD O
o in

©
o
CD

CO CM CM co o i co c o co CO CO CO CO CM CO CO CM CM CO CO

o
o
o

o o
o o
o o

o o o o o
o o o o o
© o o o ©

o o
o o
o o

o
o
o

©
o
o

o o o
o o o
o o o

O
O
O

o o
o o
o ©

o
o
o

b V O © © y y y i © CM o © y © o o 1

o
o

o o
o o

© © © © ©
o o © o o

o o
o o

o
o

o
o

O O O
p o p

o
o

© o
o o

o
o

CO o i co ^ CO ^ CO CO CM CO CO CO CO CO CM CO N1 CO

CD V CD < D D < < CD CQ O CD 00 CD CD CO O 0 0 < CD

CD © o T* CN CO N* in CD N- CD © o y CM CO N* in CD' y i
: x

y i
X

CN CM CM CM CM CM CM CM CN c ? CO CO CO CO C? CO
X X X X X X X X X X X X X X X X X

o o o o © © o o o © o © o o o o o o o
© © © © © © © © © © © © © © © © © © ©
CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O
ve

ra
ll

A
ve

ra
ge

:
3.

05
26

32

0
3.

09
9

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Computer Science 11 OH - Fall 1990

I 210 210 In crease G PA
I C o u rse C o u rse In After
I1

G rad e P o in ts G rade 2 1 0
1

O verall S tan d a rd Deviation: 0 .604691 0 .794719 0 .478
C om p.Sci. A verage: 3 .0625 0 .0625 3 .058
C om p.S ci. S tan d a rd Deviation: 0 .6 58478 0 .826797 0.471
N on-M ajor A verage: 1 -0.11111 1.105
N on-M ajor S tan d a rd D eviation: 1.414214 0 .31427 1.585

to
o

www.manaraa.com

C
om

pu
te

r
Sc

ie
nc

e
11

0H

-
Fa

ll
19

92

201

Q.

1 1 «

I ■§£'

I

c E
CD®

s l S .

T- ® 0 ® S O ' f ® N C D O) CO ▼- CO W N* CO CO M - C M O O f - N i n C O ^ - C O C O C O O J W

CO COCOCOCOCOCDCOCOCO CN

CM CM CO O CO GO CM K O K i -
CM CO T- CO CM CM CO CM CM CM CO

CM<OCOCOCMCOC0COCOCMCOCNCO<0COCOCO<0C0COCOCO

O ^ tO C N O C O C N C M C M C O O M -K C N C N C N C N C N C N M -C N C O
COCMCOCOCMCNCOCMCMCMCMCMCMCMCOCMCOCMCOCMCMCM

i 8 _
i l §
5 0

° . i |^ Ll uj

K N CD CO h-CM M -0> CO W
cm ^ n in o co io co co in COCDO>̂ "̂ M,N^“CMCOT-COCOIOÔ tOÔ *mCMCÔ -

OOM’ h - C O T - C O K O M 'C M C O O i n C M in i n M ’ COCDCOCMN.

o E
- 3 "
o E

- 3 "

? i S

— » o .eg E

- * 3

.2, 0 j j j j j j j j j 5 z j h j w c /) j j j h j , . J J J J J J J h J J J l J h l
<9 >-UJUJUJCOujlUCO-lUJliiUJUICOUJS>»COCOLiJCOCOh:cOlllCOUICOCOCO</)COCDUJh-COCOI-
2 COO.Q.Q.O.M|Q.QuOQ.X>QuUJQ.aXCLQ.a.UiQ.^!aQ.Q.Q.a.a.Q.UJa.CLLii<Q.UJ<

Q . o o o o u i o o n o o o o o o < o . o o o o o 2 o o o o o o o o o o s 2 0 o s

— ▼*’ ”̂ ,«“ CMCOCMT-T-r-̂ -COCOT-̂ -COCOCM̂“ ^^*^-^“CO -̂ -̂,r-T-»-^-T~^“ -̂̂ -T-CM̂ “ CMCMo 3 3 D D D D 3 D 3 D D D D D 3 D 3 D D D D D D D 3 D 3 D D D D 3 3 3 3 3 3 D

 ___ ̂ _0'i-CMco5rincoKcoo>o-»-cMcoM*in<oh-coo)o«»-CMco<0'incor .̂ooT ^ c? T u?t? h '09cl1T '7 ,r T T ,r ,7,r ,7,7[lirlltl,r llrllrllrlICV N rjnp,nn!? (? (? n n
i i i i i i i i x i x i i i i i i i n i i i i i i i i i i i i i i i i i iS}JSi5JS5)2i2JS5!5J!5!SJi2iS5!2J2!2i5J!2!HS2!2!Sil52ic'J2Jr>,cgr,,ĉ Nr,J{' |c^ N 'NCMrgcM0)a)0>o>ao)0)o>o>o>o>0)0>0)0>a>o)0)0)0)0)0)0)a>0)0)0)0)030)0)0)0)C7)a)o>a)0)
C O W C O C O C O C O

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

C om puter S c ie n c e 110H - Fall 1992

I | 110 110 | 110
I Total E xam j Exam
j C la s s
|

M ajor j E x am s A verage j
1 1

1

392H -39 1 U1 G E ST
i
I

392H -40 I C P S L I
392H-41 I U2 MEEL 1
392H -42 I U1 C P S L 1

Overall A verage:
Overall S ta n d a rd Deviation:
C om p.Sci. A verage:
C om p.Sci. S ta n d a rd Deviation:
Non-M ajor A verage:
Non-M ajor S ta n d a rd D eviation:

110 110 110 Multiple D esign Parm . Linked w eb W EB |
Exam Exam Final C hoice Problem P a ss in g Lists m o d e P rogram j

2 3 Exam (0) (32) (16) (16) (0) (0) |

150 28 16 8
176 29 16 14
193 32 16 15
152 27 16 15

147
31 .14
138.9
34 .14

159

26 .703 15 .459 10 .972
4 .2609 1 .3675 4 .3172
25 .636 15 .636 10.333
4.1181 1 .1499 4 .8041
28 .267 15 .2 11 .867
3 .9744 1 .6 3 .324

www.manaraa.com

C
om

pu
te

r
Sc

ie
nc

e
11

0H

-
Fa

ll
19

92

203

0 0 0 0 0 O O
0 0 0 0 0 O O
0 0 0 0 0 O O
0 0 ^ CN O O

o o o o o o
o o © o o oo o o o o o

o o o o oo o o o oo o o o ©
O CN

o o o o o o o o o o o o
CN © O O

oo

— —-

CO in co in
CN O CN 0T“ CN ^ CNO 0 r O

B
GO B

9

niOIOIO^iO o O O O h» o
CN CN CN CN CO CN
d o d d c p d

in w in o o o
h - CN CN

p> in P» p>
GO N o o

in in in in in
0000 0
CN CN CN CN CN
0000 0

8 B *
CO in co in
CN O CN 0T— CN *r- CN0 O ^ O

B
GOo

in
B
9

in in in in in in in in0 0 0 0 0 B 0 0CNCNCNCNGOCN CNCN
OO*O O 0• d 9 O O

O i in P- p>GO N0 9
in in in in in
000 0 0
CN CN CNCN CN
O O O O O

CN m t* in co CO GO in
CN 1 CN T- in CN
O 0 ® 0 GO 0

9 O1 O O O 9

fflCN S
* - © ® CO V ■*-9 0 0

in N CN in CN CN
N CO GO CN CO GO

9 r T d T
00 0

T"
0

3<
in CO CO CO "*“■ GO
0

5

0 0 0 0
CN CN
< 4

O

3CO CO CN CO CO CO
O) 0 03 0) O i O i

0 0 0 O O 0
0 0 0 O O 0
CO N" oi N2 CO <3*

g

cq < 0 < m

CN co CN T“ CO CN CN CN CO CN CO CN
O 0 O O O O 0 O O 0 *z P 0 O 0 O
CN CN CN 9 CN 9 CN 9 9 in cn CN CN CN CN

4 < < < 4 < 4 < < < o < 4 4 4 4
CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO COOi Oi 03 03 03 Oi 03 03 0) Oi 03 03 03 03 03 03
0 0 O O O 0 O O 0 © O O O O O O0 0 O O O 0 © O 0 0 O O O O O O
CO *0* •N" oi •N- CO Tt co Tf

CQ < < < < O < CO< < < CD < < < <

CN
8
4COo
oo

0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0cdd^^CNCNcdcO^^^
o o o o
co ^

0 00 0
^eW^oi^NrcN^codcN^cNCNCN^^^^cd^

O C 0 l i - < D U O C Q £ D < < < > C D < O < C D < < O < < O < m U - O < O O O < < < < C D <

rNPJ

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Computer Science 110H - Fall 1992

| P rev ious 110 110 S u b se q u e n t
j 110 C o u rse C ounse 110
j G rade(s) G rad e P o in ts G rade(s)
I

392H -39 | B 3 .00
392H -40 | A 4 .0 0
392H -41 j A 4 .0 0
392H -42 I A 4 .0 0

Overall A verage: 3 .103
Overall S tan d a rd Deviation: 1 .128
C om p.Sci. A verage: 3 .045
C om p.Sci. S tan d a rd Deviation: 1 .147
N on-M ajor A verage: 3 .333
Non-M ajor S tan d a rd Deviation: 0 .789

120 120 120 Additional D ifference D ifference D ifference 1 In c re a se I
Counse C o u rse S e m e s te r S e m e s te rs In In In j In |
G rad e P oin ts S ection Instructor S e m e s te r |

1
G rad e j

I

A 4 .00 93A -203 0.25 0.205
1

0 .205 j
I

0 .0 0 0 I
A 4 .00 93A-201 0.187 0 .205 0 .205 | 0 .0 0 0 I
A 4 .00 93A -202 0.182 0 .205 0 .205 j 0 .0 0 0 I

3 .654 0 .032538 0 .007385 0 .007385 0 .3 07692
0 .617 0 .466156 0 .512433 0 .512433 0 .7 73067

3.5 0.039 0 .0418 0 .0418 0 .45
0.975 0 .48599 0 .509299 0 .5 09299 0 .804674

2 0 .080364 0 .013727 0 .0 1 3 7 2 7 0
1.907 0.129005 0 .297249 0 .297249 0

toO

www.manaraa.com

C
om

pu
te

r
Sc

ie
nc

e
11

0H

-
Fa

ll
19

92

205

2 | S(9<N

5 to t o O 0) o o
V to h* O CO 00 CN
CO CO CO O CN to o - T“
oi CO "T- co oi CO co CO

S O) CO O CO lO OI © ©
co cm 0) o in
oi oi oi cn co

0 CD © CD CD
01 co

CD N*N T*
CN to
oi oi

K CD 9 o> ▼- oCD CO ^

CO ©

2o O

o
o
o

o o o o
o o

o o o o0 o
01 o

oooo
oooo

ooo
<?

o o © o © o o o o o
o o o o o
^ oi ^ oi ©

o o © o o oo o o o o o
o o o o o o

T* ^ o o o

I f
CN O 5o °-

o o o o o o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o o o
N1 co oi ^ CO V <r- •N- oi CO o ’ ^ oi * ^ oi oi ^ ^

o l f
s g f it) W

m o < m < o m u.< o < o o o <<

0'»-CNC>5^-ioeoK®0)0-«-CNeo^-i/5Cor^ooa)0'«-CNC>'«-incD^-ooT-CNCO^lOOpKCpO^-T-^-^-T-T-^-^^-r-CNCNCNCNCNCNCNCNCNCNCOCOCOCOCOCOCOCOCO
i i j i
C N N C N O IO IC N C N O IC N C N C N C N O IC N O IC N O IO IC N C N C N C N C N C N eN C N C N O IC N tN C N O tC N C N O IC N C N C NA O o a io o o o o o iO io o o io ^ o o o o iO o o o tc D o o o A c n o o io o o o o ia)
c o o c o c o c o c o c o c o c o c o c o c o c o c o c o c o c o c o c o c o c o tO c o c o c o c o c o c o c o c o c o c o c o c o c o c o c o c o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Computer Science 11 OH - Fall 1992

I 210 210 In crease GPA
I C o u rse C o u rse In After
I1

G rade P oin ts G rade 210

392H -39 |
392H -40 |
392H-41 j A 4 .0 0 0.000 3 .652
392M -42 | A 4 .0 0 0.000 3 .875

Overall A verage: 2 .954545 -0 .36364 2 .863
Overall S tan d a rd Deviation: 1.223901 1.226431 0.689
C om p.Sci. A verage: 2 .736842 -0 .15789 2.475
C om p.Sci. S tan d a rd Deviation: 1.331485 1.088851 1.061
N on-M ajor A verage: 1 .333333 -0 .22222 1.427
N on-M ajor S tan d a rd Deviation: 1 .885618 0 .628539 1.664

t o
o05

www.manaraa.com

C
om

pu
te

r
Sc

ie
nc

e
11

OH
-

Fa
ll

19
93

207

c o n n n n o o i eo i - eo o a cn es t - cm cn cn i - eo cm eo co eo t - oj cm cm o a> cm co o> cm o> eo oo
s r r ^ ^ r - i - ^ r v i - r r 1 t* t- t * t - ▼”

in S,n
Q.

U s

5

« n r o o 'tn w T to v 't in in v u x N n 't^ M n in w n c o ^ V T - n v n n in

1 B —
c ^ S

oi m '
a 2 ^0. h

O N N t O r O O O C O O r n o N ^ N n O O n O W ^ r O l t O O ^ O O W r t ^ f r

© CN (7) CN N- 0) CN f * . C N C N C O C M C M C M O > C M C M O) N C N N C M C M C O C O C N C O K C M O > © C O C > © C M C N N

m * O CO O) IO CM (P O) eo ^ CO •*- O) CD IO 0 > <0 < 0 CN IO CO CO O CN W CO * - i - U> K <0 CO 004? g inr-cococDioft cocoh-iocotntncoh-h-cocoioinf'-cocoh-iocoKio^t-r'-coioiocor-io
i l l5 0

M - r O N o c o o 'd* co co ep co eo co eo co eo ^ eo cm eo <0 cm ^ eo cm O) co cm h - io co N t -
S- fc CN CO CN CO CO h - tO C O O O C M C O C O ^ C O C O O O C O I O ^ C M C O ^ 'lO G O ^ I O N ^ - ^ O O ^ 'C O ^ tO O O ^ t(0 r * t " r* ^ ' r f• 2 g

' i l uj

eo to t - Tt co eo eo e i o « e i o > i i i N N o > i - (M a) ^ « i o a o a > o (B n (B T - N T r n i n o i i i r
os oo oo co co (0 cn r - K c o N ' C O h - i > > c o c o a) c o c o r > 4 ’ o o r - o o o o i ^ i ^ c D u > h > o o c o c o r « - a > o o s

° co cn ^ co oc m c ' j T * c n c o c o T r c o c s a > e o - » - a o p > T - i n i n e o c O T ? c o c N O) O c o T » - c M C N 5 ' « t c D
m co oo oo co o o o o r ~ c o r ^ c o i ^ r - o o c o o o N F - c o o > c o S o o o o o o o o m r > - c o s - i o N - a c o i o

cona)iooiqiooi-Noipicou)noiinioo)oconaNNoiNC)CDOioocNto«T-oo
c o o o c o o o a > c o v c o o > o o i >- S c o c o s o h - o o o o r ^ o > c o c o h - K - c o o) c o r > N t > - r > N o o G O S - o o o) c o

8>

_ to
© £ E
- £ .8

n n n n N s n o o o n s o s s n s n N s n o s n o s s n s n o o o n s o n s
T-N^nNNtndncgaiTrcbT^obioh-'cooinocbcbndoinpicjcNCNodo^coiricbai
<oooNoocoNnNoooor-coh-coh-r-eoooeoooawoor~Nooh-NNcor-r-ooKr^oocoio

o -
2 t E ! c > 2 ! 2 f i c ’ O W 5 S |i > w c o c i) r i o) C ' i N r : c p 6 6 b o i r : c 6 » - s i d i <) 6 r i r : u j o) »
o l 3 S 2 P S S ° I O U > , r " ® N ' r <,> p < ® |n ^ |o ^ (O c o N T - c o N n e ' i c o ' - n v c M i M i n i n o
T - C M P I C M N N r - C N C N C N ^ - C N C N C N C N C N C ' 4 C N C N C N ^ - C N C N C N C N C N C N C ' J ' » - C N C N C N C N C N C N C N C N

wjfiW M W ffliuwm ncomJwM M wiowwfflwm iJm oDi-M i/xiojM Bwm n
CLD.Ilia.Q.aa.a.Q.a.Q.Q.ZjQ.Q.aQ.Q.Q.Q.Q.Q.Q.£D.0LZ<Q.aOyQ.a.UIQ.Q.D.
U O O U U O O U O O O O l l l O O O O O O U O O U C l U O I l l S O O t D t D O U O U O O

n
o ^"^^CNj“ CNr:CN̂ ~̂ I-3-CN»-T-̂ -T-rMCNCN'<-̂ -'<-CM'<-T-Tl-CNT-CNT-CN'̂ T-̂ -T-T-̂ -3 3 3 D 3 3 3 D 3 D D : 3 3 D D D 3 3 D 3 D D 3 D 3 3 3 3 3 D 3 D 3 3 3 D D

’7C? C? Tr U? UpN-CpcT>T7T-T-,--r---T-T--7 T-.CN<NCNCNCNCNcSICNCN<NCOmeOCOCOmcomcD
i m i i i i i i x i x i i i
c o e o e o e o c o e o c o c o c o c o c o c o e o c o c o c o e o e D c o e o c o c o c o c o c o c D c o e o c o c o c o e D c o c o c o c o c o e o£ £ 2 2 £ S 2 2 2 2 2 2 2 2 2 2 2 ® 2 2 3 3 2 ® ® II>®®®o>c»cj)O)0)O>ci)O)cj
eO eO C O C O eO C D C O C O eO eD C O C O eO eO C O eO CO eO CO eO CO CO C O CO CO CD eO eO CO CO CO eO eO eO C O CO CO CO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Computer Science 110H - Fall 1993

| | 110 110 |
j j Total Exam |
j C la s s Major j E x am s A verage j

O verall A verage:
Overall S tan d a rd Deviation
C om p.Sci. A verage:
C om p.Sci. S tan d a rd Deviation:
N on-M ajor A verage:
N on-M ajor S tan d a rd D eviation:

110 110 110 | 110 | Multiple D esign P arm . Linked w eb WEB
Exam Exam Exam I Final | C hoice Problem P a ss in g Lists m ode P rogram

1 2 3 I
I

Exam |
I

(80) (12) (4) (4) (5) (15)

78.58 74.65 75.38 150 61.811 9 .1892 3 .5946 1 .9444 3 .3243 11 .27
10.23 12.31 13.35 24.42 9 .8168 2 .8649 1.0256 2 .0131 1.4342 1 .6216
79 .97 74.68 76.04 152 62.25 9 .1429 3 .6429 2 .1461 3 .1 4 2 9 11 .536
10.91 13.31 14.78 24.85 10.041 2 .8374 0 .934 2 .1 7 2 3 1 .5972 1.4996
74.11 74.56 73.33 144 6 0 .444 9 .3333 3 .4444 1 .3333 3 .8889 10.444
5 .626 8.5 6.96 21.97 8 .9457 2 .9439 1.2571 1 .2472 0 .3143 1.7069

to
o
00

www.manaraa.com

C
om

pu
te

r
Sc

ie
nc

e
11

OH
-

Fa
ll

19
93

209

O XI
£ 3 ®

O XI

c
o ,S>

onoaoffit i) iooo ioo« ie v o o o in oisionNcoinoo o n in in in wCNO ^ O) ^ O) ^ NCDC00>t**“ O ® ^ " N N O O O N ® 0) (0 0 0)0)

O C O C n C N O l O I T) r O f l O O I f i O I A r O O I O C
^ 0) 0) 0 0 0) 1 0 O 0) M (D (D C O O) 0 0 0

C O C S ^ B O O ® t- ® O O
O CD O) o> O ® 0> CD O GO O CO O)

o o o s o o to < t u) 0) u) i n o n c o o o o) i f l c o i o o) o i o o u) a) 0) n to ® c n o o o ^ ̂ ID CD CD 5J* ^ ^ ® ^ V to tO ^ ® tf> lO ^ ^ Tf "C ^ IO ^

o .a
£ 3 *

cO O) -f- *B

to oo in in o cp io o t n ^ o t n ® * * co o> Q> co to ® to © ® g> ® ® to ® ® o ® n o>h- © co to n* © O T r o v c o o) ^ o>c>o>o>io o> 10 to o> o> © 5 ® ^ © ® ® o> o> n

l O O O t O I O T - O ^ I O O O C N ^ ’ ^l’ © O O O O O N O I O O i ^ C O O I O O I O O N ^ O C D O i O) ^

O X i£ a]®

eo5>

O S i-_gcs

^ - l O I O ^ f l O O C O O O l O l O O l O O l O ® T - i n ® « * ~ I0 t0 © 0 t0 0 ® © 0 0 l ® 0 O 00 o o® O O © ® © 0 (0 0) 0 0 0 0 0) 0) 0) 0 0 0) 0 © O O O O O O C O ’i - O O O (0 0 0)0)

r a s o o N . o i o c p o ^ t o i o i o i o i o t O ’? © ® ^ © ' * © © © ® © ® * to CO N- o c e * o ® to ŝ- tj- ^ -c v ^*® ^ ^ ® ® * * co ' v ** co co ^ ^ ^ co cn

o i a o o o c o o o c o o n ® © ® i o © ® ® © © o © ® © ® h - ® u 5© o © o t o i n © 10 ©©0 0 0 © © © © © © o o o © © © ® © © © © © © © © ^ © © © © © © ®

N l O O C N I O N l O O I O I O N i n C N C N C N l O I O O i n O K O I i n O O O I O t D O l O t n i O i n C N O t O C M C O

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 ^ 1 0 0 © O l f l O O0 © 0 © 0 © N © 0 0 0 © N N © N © © © N © - * r © © ’N - 0 © 0 © © ® © © 0 0) 0 ®

tq®p^;®cq*-;o)®®ioio0>®0><o<ocotom'-o<0tn^>o>coioococ0ioo>oo>®®^' £ i ® 2 > r a p o ® ^ t o c N © c o ® © ^ c N © © N : © e g d © c N © ® © © * © © N i o © © © N i o N © © © N » © © 5 r © © o ' ' r © © © © © © © © i o i o © © N © © © © ® i o © © o o o ®

0 oo^cocNcbwiricqao^wdcoiri^NcoocoNdaidco^NcbcNCDN^ONCN^cocd®
C O p p J ^ C O C S O C D C O O O S m C D W O O O C O I f l ^ O T r C D C p O O f N t O S O C O N S C O O) ©
i n N N N i n N © © © ' ' r ® © © © © t O N N N l O ^ ^ N © l O N N N © C N ^ N N C O N O C O0 3 E

^1̂ - . « « ^ * * O T ‘c'l w ^ w < O N ®®OT-NnN'lflCOSCOO)O^Nrt^inCONflDT^^t^C^^^ff l^^^^^^^^^^tNNNNPj lNCNNNCNneDWWnCDWCDCD
i i i i i i i i i i i i i u i
® ® £ 0 ® e o ® ® ® ® ® ® ® ® ® ® ® ®
© 0 > © © 0 © 0) © ©
® C *) C O ® ® ® ® ® ® ® ® ® ® ®

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Computer Science 110H - Fall 1993

| 110 110 | 110 110 110 110 110 110 110 110 110 110 110 |
| Total Program j Lab D esign Lab D esign Lab D esign Lab D esign Lab Lab L ab |
j P rog ram s
I

A verage j
I

1 2 2 3 3 4 4 5 5 6 7 I
I

O verall A verage: 89.81 41 .55 85 .83 41.81 87.81 4 4 .22 7 7 .88 44 .89 76 .55 75.71
Overall S ta n d a rd Deviation 14.75 8 .456 2 2 .29 8 .508 22 .99 5.241 23 .67 5 .365 32 .45 34.71
C om p.Sci. A verage: 88.54 40 .28 85 .04 40 .93 88 .52 43 .75 78.76 44 .15 75.92 75.42
C om p.Sci. S tan d a rd Deviation: 16.06 9 .243 23.51 9 .269 20 .12 5.711 23 .79 5 .804 32.48 34.91
N on-M ajor A verage: 93 .78 45 .67 8 8 .2 2 4 4 .88 85 .67 4 5 .87 75 .44 47 .38 7 8 .5 76.63
N on-M ajor S tan d a rd Deviation: 8 .417 2 .108 17.92 3.586 29 .87 2 .944 23 .17 2 .058 3 2 .26 34 .04

to

www.manaraa.com

C
om

pu
te

r
Sc

ie
nc

e
11

0H

-
Fa

ll
19

93

211

o o o o
o o o o 0 0 0 0

CN

000 000000 o o
000 000000 o o
p o o p o p p p p o oO t* O OT-T-’OO*- © *7

O O O 0 0 0 O O O O
O O O 0 0 0 O O O O
O O O 0 0 0 O O O O
CM O O 0 d 0 T-* O *7

8= a
5 -

P c .J3is

10 U> 10 lO d © o 9

i n in i n in
d d d c o

cm cm cm in
f - CO
CO CO CO CM
o o o co

h - in i n
S o o

S'

U) ID i t
m 9 °
o

■ «n i n in
; 009

m i n ^ i n i n in
p d g d d o

o

i n cm m* «<*■ cm co
CO r 1 .
CM CO *
o o

-a 1 - GO
CO COo o

00
00
CO

in

9

in
o

co

9

f c
t o in K N K K KkSN

0 0 0 9 0 9 O O O O
T “ T* 0 T* T* 0

CO CD in co in CO CO CD
N CM Q h- 0 N N C M N

0 3 0) O 1 o) 9 0 0) 0 0)
d 0 d■ d O O O OI

r- s in ^r- in a) k in inco in CO t- CO CM (0 h - r -
co CO CM CO CM in co co co
d ▼- O 0 0 0 0 O

O w
C O ­

CO CO CO CM0 0 0 0
CM CM CM CM

•m* ^ ^
0) 0)0 0)

0 0 0 00 0 0 0Tf M* O

in -»- ■*- 0 0 0
in CM CM
< < <tSM- ^

0) o>
O O O O O O
CO CO

CM CO (o o < CO CO OOO CO
o
CMCM CM in CM CM CM

< < :< < < :< <: <MWMV M 2 M-
O) O) 0) O) O) O O) 0>
0 0 0 0 0 0 o o0 0 0 0 0 0 o o
CO ^ CO ^ Tj- CO CM CO

S Tf O)
o o

i n in i n<:<<
03 0) 05
O O O O O O

rf CO

CM
o
CM

o
o
CO

1* CM
o o
i n cm

« i <
O) 0)

co co in m 0 0 0 0
i n in in in
< < : « : <

M’ M*
0)0 0) 0)

0 0 0 0 0 00 0 0 0 0 0
^ cd ^ M* cd ^

< < < u . CD CD < m<m < < m cd < < m m < dd < < m <

<
q> o>

• i

0 O 0 0 0 O O O 0 O O O 0 0 0 O O O O 0 O O O 0 O O 0 0 0 0 O O 0 0 0 0 C0 O 0 0 0 O O O 0 O O O 0 0 0 p p O O 0 p O O 0 O O 0 0 0 0 O O 0 0 q 0 O
CMCOCOCO CMCMO cd CM T“ cd cd cd CM M* M" cd CMT-* cd CMM* cd cd cd 0 CMM* cd 0 cd M* M- cd

o m m m o o u - O a a o < Q m m m o < < < m o o < f f l O < m c o m u . o < m u . m < < m

-CNr)Tj-in<̂ jf-.cpcr)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Computer Science 11 OH - Fall 1993

| P rev ious 110 110 S u b se q u e n t |
j 110 C o u rse C o u rse 110 j
| G rade(s) G rad e P o in ts G rade(s) |
I I

Overall A verage:
Overall S tan d a rd Deviation
C om p.Sci. A verage:
C om p.Sci. S tan d a rd Deviation
Non-M ajor A verage:
Non-M ajor S tan d a rd Deviation

2 .676
1.14

2 .679
1.167
2 .667
1.054

120 120 Additional | D ifference D ifference D ifference I In c re a se I
C o u rse S e m e s te r S e m e s te rs In In In | In |
P o in ts I

I
| S ection
I

Instructor S e m e s te r j
I

G rad e |
]

3 .36 0.064 0 .0504 0 .0908 0 .2
0.889 0 .922045 0 .967559 0 .990498 0 .8 48528
3.286 -0.012 -0 .05562 -0 .02195 0 .1 4 2 8 5 7
0.933 0 .98665 1.005865 1 .026955 0 .888322

2.5 0 .308667 0 .404667 0 .4 5 5 1 6 7 0 .3 33333
1.803 0 .237647 0.442191 0 .4 7 1 2 9 7 0 .471405

www.manaraa.com

C
om

pu
te

r
Sc

ie
nc

e
11

0H

-
Fa

ll
19

93

213

§H i
_ O N O M S A M t- tM O) CO CM N tX O) CM N 0» K CM h- 04 CM CO 00 CM CO r» CM « O 00 0> O CM CH h -
JT, ^ i - <r t* t* r* T- ^ r - r 1 T“ r r ^ r* t-

i p
| i 6

o o cm cm in co h- ▼-^-cMCNeo^cococMcocMM*<Mco©ioinincM©o>co^,©o>coKinco*-
CM CM CM CM CM ▼“ CM CM CN 'r*'* '“ C M CM -*-CM CM CM CN CM 'r-CM CM ’* - C M C M C M T - t- C M C M '< -<»“ 1«“ CMT-CM

in' CO 05 N- in CO CO lO ▼“f*-C0<0C0CMh»M‘0>T**l0M,̂ -^^<0CM*“ f̂,<0<0inC0CM0>^,inc0O'i-
g m p j ^ t - v CM *“ *“ ^ ^ - C M T **“ '«~ C M ,r“ C N C M ^ - C M T - « r - C M C M ^ ^ " ^ ^ C M ▼“ ^r- CM CM ▼”

P ?
g P)CM T-t-T-T-i-^T‘T*r,T-T,̂ T ,CMt“r^T-T*CMT-^^r'T«'rT*^^(M^r,^T*t-T-NT-
(D CiT
H i
E rag -|

£CL

3 CNCO(SOqGOCSCOIflNGOO)flO^COOOi-inOinNO(Dr>incO(90)0)0)CO^^^CO^CM
r CM CM r * r * ^ N W ^ N r - ' r i - i - ^ ^ ' r r ' r ' ^ ^ ^ ^ CM ▼*

£ | ?
C D < M

S CO o CO o CO © * t
inh- tno09COco o oCO0)r*» 00COCMCMCO CO<0*

900
CM

■»CM o O 00r̂ CO h* COo o in oino> a> CO o O)CMCO CM COCM COCM CO

2 ©
1 c !
O CD

O O O
O O O OOO
© ▼“ ▼"

O O OOOOp o o
▼“ CM ▼-

O O o o O O o ^
ooo

o o o o o o W o
ooo

o o o o o o
o ▼“

o o o o o o ▼” o oo

o i l
s g g o°-

OOO
O O Oco ̂

OOOO O O M1 <0 OCO
o o o o CO *

o i-S
S g s o o

00 < < O < 0 0 < 00 00 00 < < O < < 00

 OT-CNnTri.ocor'-cooO'*-C''jcoTi-Lf}CDh-coc7>0 'T-cNcOTfLncDr-~con ^ i|?<̂ |r-a|)o)T|--̂ -̂ -T̂ 'r--̂ -T̂ T|-'r-T-r>icgcNCN((NcNrv,o<cNcNCOcocommpimcoro
x x x i i i i n i i i i i i i i i i i i i i x i i i i i i i i i i i iSSSSSSSSJSSSJSJSSSJSSSSSSSSSSSCSSCSSSOootoncocococomCTcoo)O]O)O)Q)O)O)O)u)D)O)0)O)O}O)O)O)O)O)(no)O)O)O)O)O)O)O)a)O)O)O)O)fflfl)a)Aac o S o o S o ^ o o o S

I I
CO CO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

214

0)01

II

1 5

2 1 ?0 < N

co
0 5a>

I
o

s
ca)*5

CD

©
3a
E
oO

05 ID h - CM CO Q*
co <o to c o n g>

CD CO ^ CO CO
03 9 CM N - CO 4*
co CD 4 c o co »
^ CO CO CO
0) N O) (M 0)
CM CO CO ' I - N 05
CM CO 4 - CO CD CD
CD f*- t- ̂ (p CD

i - h - CO CD 4*
CM 05 O CD CO CM■i 0> ,; c p . ;<P
CM CO CM CO CM CM

CD ID h» 4 * 0)
N CD ID CM 00 4*
co ro co h - co c o
GO CO CM CO CO O
r - o 4 05 co c p
CD CD 4 1 N ^

CD K CO CO CM CD
t- CD O O CM CD
CO CO •*“ f*- CM 0 0
cd in co K cm g?
h - ID 03 CO CM 0 5
id *? co o i co ̂
-i- CM ^ t * CM

CM 0) * - CM K CM
CO v CO p> CO CD
CD CO 0 3 N> CO 4
CM CD F- O CD 0 0
ID in _*• 0 5 CO ▼“
^ 0 3 J CO ©

T- 4 \ 0 CO

ID CO
CO 8

0 5
CO s

4 * ID ID
CO © CO o r “

N N O C N ^ C O
S CM CO o 0 5

CO ID CO
r*- 0 5 CM 0 5
T- 0 5 0 5 COr 00 o -4;
o o o

ID CM 4 4* 4 CM
(p O T* tf) n i DhrKCO^Ifl
■r- 03 ID 05 05
r “ CO CO 05 ID
4 o CM CD 05
CO CO © v -

(0 •5I <d"E
LJ CJ> CO
I E ?
C < t o < w

W 5 ‘5 .<5 .2,
J co co eg

a a d d S 2
i E E c c

OOOO
o o z z

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

215

APPENDIX D

INDIVIDUAL PROBLEM SOLVING TEST STATISTICS

This appendix consists of the individual statistics for the problem solving portion of

each exam for the test study CS/1 class. The total points possible for the Pre-Test, Exam

1, Exam 2, Exam 3, and the Final Exam were 20, 20, 25, 25, and 12, respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 32. Problem Solving Statistics (Actual)

Student Pre-Test Exam 1 Exam 2 Exam 3 Final Exam
393-1 12 14 6 20 10
393-2 16 14 19 20 12
393-3 12 16 17 22 9
393-4 20 14 15 22 12
393-5 20 18 18 25 7
393-6 18 14 13 18 9
393-7 2 16 5 7 2
393-8 3 10
393-9 15 16 21 21 7
393-10 17 18 17 21 12
393-11 18 14 13 22 12
393-12 19 16 16 12 8
393-13 18 16 18 18 12
393-14 14 20 22 24 2
393-15 13 18 17 23 12
393-16 0 18 14 18 9
393-17 20 14 19 22 12
393-18 21 14 21 23 12
393-19 15 16 15 22 9
393-20 20 20 24 24 7
393-21 15 16 21 22 12
393-22 17 14 14 16 7
393-23 10 16 24 20 12
393-24 16 14 16 25 12
393-25 11 16 12 14 8
393-26 15 18 21 25 8
393-27 16 12 24 22 12
393-28 13 16 16 20 8
393-29 19 16 16 19 7
393-30 9 20 15 18 2
393-31 9 16 18 24 9
393-32 16 13 22 20 10
393-33 14 18 9 19 8
393-34 14 14 14 18 9
393-35 14 14 15 17 10
393-36 18 12 23 25 12
393-37 21 20 20 18 12
393-38 12 18 11 21 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

217

APPENDIX E

SUMMARY CS/2 COURSE STATISTICS

Tables 33, 34, 35, and 36 are summaries of the statistics for the CS/2 classes upon

which some of the validation is based.

Information for each CS/2 course from the Spring 1991 semester through the Spring

1994 semester is included.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

218

Table 33. CS/2 Course Statistics - 1991

Semester Section Instructor Semester GPA Section GPA Instructor GPA
Spring 91 201 1-1 3.788 3.833 3.788
Spring 91 202 1-1 3.788 3.733 3.788
Spring 91 501 1-1 3.013 3.278 2.930
Spring 91 502 1-1 3.013 3.118 2.930
Spring 91 503 1-1 3.013 3.063 2.930
Spring 91 504 1-1 3.013 2.765 2.930
Spring 91 505 1-1 3.013 2.941 2.930
Spring 91 506 1-1 3.013 2.571 2.930
Spring 91 507 1-1 3.013 2.583 2.930
Spring 91 508 1-1 3.013 2.875 2.930
Spring 91 509 1-1 3.013 3.111 2.930
Spring 91 510 1-1 3.013 2.769 2.930
Spring 91 511 1-2 3.013 3.375 3.203
Spring 91 512 1-2 3.013 3.125 3.203
Spring 91 513 1-2 3.013 3.357 3.203
Spring 91 514 1-2 3.013 3.222 3.203
Spring 91 515 1-2 3.013 3.000 3.203
Summer 91 302 1-1 3.347 2.769 3.347
Summer 91 303 1-1 3.347 3.417 3.347
Summer 91 305 1-1 3.347 3.538 3.347
Summer 91 306 1-1 3.347 3.727 3.347
Fall 91 501 1-3 3.229 3.500 3.229
Fall 91 502 1-3 3.229 2.933 3.229
Fall 91 503 1-3 3.229 3.063 3.229
Fall 91 504 1-3 3.229 3.250 3.229
Fall 91 505 1-3 3.229 3.300 3.229
Fall 91 506 1-3 3.229 3.412 3.229
Fall 91 507 1-3 3.229 3.313 3.229
Fall 91 508 1-3 3.229 3.235 3.229
Fall 91 509 1-3 3.229 3.294 3.229
Fall 91 510 1-3 3.229 3.588 3.229
Fall 91 511 1-3 3.229 3.118 3.229
Fall 91 512 1-3 3.229 3.000 3.229
Fall 91 514 1-3 3.229 3.091 3.229
Fall 91 515 1-3 3.229 3.111 3.229

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

219

Table 34. CS/2 Course Statistics - 1992

Semester Section Instructor Semester GPA Section GPA Instructor GPA
Spring 92 201 1-1 3.372 3.294 3.372
Spring 92 202 1-1 3.372 3.353 3.372
Spring 92 203 1-1 3.372 3.556 3.372
Spring 92 501 1-1 2.929 2.867 2.929
Spring 92 502 1-1 2.929 2.333 2.929
Spring 92 503 1-1 2.929 2.647 2.929
Spring 92 504 1-1 2.929 2.600 2.929
Spring 92 505 1-1 2.929 3.067 2.929
Spring 92 506 1-1 2.929 2.818 2.929
Spring 92 507 1-1 2.929 3.100 2.929
Spring 92 508 2.929 3.118 2.929
Spring 92 509 1-1 2.929 2.692 2.929
Spring 92 510 1-1 2.929 2.846 2.929
Spring 92 511 1-1 2.929 3.167 2.929
Spring 92 512 1-1 2.929 3.353 2.929
Spring 92 513 1-1 2.929 2.769 2.929
Spring 92 514 1-1 2.929 3.385 2.929
Spring 92 515 1-1 2.929 3.143 2.929
Spring 92 516 1-1 2.929 3.182 2.929
Summer 92 302 1-1 2.923 3.000 2.923
Summer 92 303 1-1 2.923 3.000 2.923
Summer 92 304 1-1 2.923 2.700 2.923
Fall 92 502 1-1 3.123 3.375 3.123
Fall 92 503 1-1 3.123 3.000 3.123
Fall 92 504 1-1 3.123 2.588 3.123
Fall 92 505 1-1 3.123 2.889 3.123
Fall 92 506 1-1 3.123 3.563 3.123
Fall 92 508 1-1 3.123 3.438 3.123
Fall 92 509 1-1 3.123 2.944 3.123
Fall 92 510 1-1 3.123 3.118 3.123
Fall 92 511 1-1 3.123 3.188 3.123
Fall 92 513 1-1 3.123 3.353 3.123
Fall 92 514 1-1 3.123 3.263 3.123
Fall 92 515 1-1 3.123 2.833 3.123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

220

Table 35. CS/2 Course Statistics - 1993

Semester Section Instructor Semester GPA Section GPA Instructor GPA
Spring 93 201 1-1 3.795 3.813 3.795
Spring 93 202 1-1 3.795 3.818 3.795
Spring 93 203 1-1 3.795 3.750 3.795
Spring 93 501 1-1 2.874 2.167 2.874
Spring 93 502 I“1 2.874 3.400 2.874
Spring 93 503 1*1 • 2.874 3.250 2.874
Spring 93 505 1-1 2.874 2.800 2.874
Spring 93 506 1-1 2.874 2.833 2.874
Spring 93 507 1-1 2.874 2.235 2.874
Spring 93 509 1-1 2.874 3.111 2.874
Spring 93 510 1-1 2.874 2.900 2.874
Spring 93 511 1-1 2.874 2.882 2.874
Spring 93 512 1-1 2.874 3.000 2.874
Spring 93 513 1-1 2.874 3.167 2.874
Spring 93 514 1-1 2.874 2.714 2.874
Spring 93 515 1-1 2.874 3.429 2.874
Spring 93 516 1-1 2.874 2.769 2.874
Summer 93 301 1-2 3.233 2.933 2.933
Summer 93 303 1-4 3.233 3.533 3.533
FaU 93 501 1-1 3.121 2.692 3.121
Fall 93 502 1-1 3.121 3.214 3.121
FaU 93 503 1-1 3.121 3.267 3.121
FaU 93 504 1-1 3.121 3.000 3.121
Fall 93 505 1-1 3.121 3.000 3.121
FaU 93 507 1-1 3.121 3.267 3.121
FaU 93 508 1-1 3.121 2.944 3.121
FaU 93 509 1-1 3.121 3.000 3.121
FaU 93 510 1-1 3.121 3.250 3.121
FaU 93 511 1-1 3.121 2.313 3.121
FaU 93 512 1-1 3.121 3.571 3.121
FaU 93 513 1-1 3.121 3.765 3.121
FaU 93 514 1-1 3.121 3.188 3.121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

221

Table 36. CS/2 Course Statistics - 1994

Semester Section Instructor Semester GPA Section GPA Instructor GPA
Spring 94 201 1-1 3.500 3.600 3.500
Spring 94 202 1-1 3.500 3.235 3.500
Spring 94 203 1-1 3.500 3.688 3.500
Spring 94 501 1-1 2.923 3.389 3.024
Spring 94 502 1-1 2.923 2.824 3.024
Spring 94 503 1-1 2.923 3.471 3.024
Spring 94 504 1-1 2.923 2.643 3.024
Spring 94 505 1-1 2.923 2.625 3.024
Spring 94 506 1-1 2.923 3.333 3.024
Spring 94 507 1-1 2.923 3.000 3.024
Spring 94 509 1-1 2.923 2.600 3.024
Spring 94 510 1-5 2.923 2.706 2.765
Spring 94 511 1-5 2.923 2.938 2.765
Spring 94 513 1-5 2.923 2.895 2.765
Spring 94 514 1-5 2.923 2.529 2.765
Spring 94 515 1-5 2.923 2.750 2.765

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

222

APPENDIX F

STUDENT REACTIONS TO WEB

The following are reproductions of reports submitted by the Fall 1993 test study group

at the end of the semester. The students were asked to state what they expected from the

class and why, their initial reaction to ueb programming, and and their current

reaction/feeling to veb programming. The reports were reproduced as written, with no

corrections to spelling or grammar.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

223

Evaluation of Fall 1993 CPSC 110H Students Evaluator:

Circle the appropriate response to each of the questions below.
Please answer each of the questions to the best of your a b i li ty based on
the studen t's w ritten evaluation. If there is nothing in the evaluation
to give you feedback on a p articu la r item, select the 'Not Discussed' option.

1. What was the student's o rig inal reaction to being told they were going
to learn something called WEB?

Not
Discussed

1

Upset

2

Unhappy Worth
A Try

Looking
Forward to i t

Enthusiastic

2. What do you believe the student's expectation of the class was coming
in to the class?

Not
Discussed

Beginning
CS Course

Turbo
Pascal

Problem Solving
and Programming

3. what was the student's reaction to the emacs editor?

Not
Discussed

1
Poor

2

Fair Average

4

Good Excellent

4. What was the student's reaction to TeX?

0 1 2 3

Not Poor Fair Average
Discussed

4

Good Excellent

S. What was the student's reaction to WEB programming?

0 1 2 3 4

Not Poor Fair Average Good
Discussed

Excellent

6. How well did the student understand the overall WEB process/concepts?

Not
Discussed

1
Poor

2
Fair

3

Average

4

Good Excellent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

224

My Expectations and Reactions to Web Programming

My original expectations tor this class weren't too high. Be tore class started, I tell

that this was]ust a htnderance to getting on to real, useful programming in C and that

Pascal was just a necessary evil. I already have some programming experience in C so

Pascal seemed to be a step down tor me and I was anxious to get on with bigger and

better things. I've since reevaluated my thinking as I've found Pascal heiptui tor

strengthening some of my C knowledge and an interesting language itself that has

some very interesting big brothers (Modula-2 and Oberon-2). i've also found this dass

interesting due to the literate programming we are doing.

Initialy, I was very exdted about literate programming as il was something new

and different, t was neat to know that we were privileged enough to be the first

undergraduate dass to get to try out this method of programming. It was also

interesting to find out that targe companies employ this method of programming;

something ot great value to me as I want to learn things that I can readily apply outside

ol college. The format lor programming in web mode, initialy, seemed helpful tor

focusing on the problem and I could definitely see the advantages it had tor maintaining

code.

Currently! have a tew problems with web programming. First, it seems that I'm

dotng alol of redundant, unnecessary writing/programming. I find myself listing out

something for the TjX document only to be typing out a similar Ibl tor the Pascal code.

Second, I strongly dislike the implementation of emacs we are using. It's entirety

antiquated and its user interface (or lack thereof) is very poor. I feel like i'm back using

Word Ported v1.0 when I know Word Period v6.0 or whatever is out there. Finally,

when working with complicated programs, like tab 4, the web style seems lo gel in the

way alot and t find myself getting tangled (no pun intended) when trying to change

things or when trying to get things lo work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

225

Great Expectations?

1. What did you expect from this class and why?

I expected, from Computer Programming I Honors (CPSC 110H), a challenging PASCAL class
with group analyses and discussions, group projects, and a large main project for the end o f the
semester. 1 believed this because that is what 1 have been associated with in all of my Honors
programs before. I expected the learning of PASCAL to be quick and in depth so that by the end
o f the semester we could do many interesting and complicated things with the computers.

2. What was your reaction/acceptance to web programming?

My initial reaction to web programming was total disgust. I felt that I had been tricked into a
course which was jttst off the chalkboard. We were told that we were guinea pigs, and 1 fell like it.
If I did not enjoy PASCAL, computer programming, and a new challenge so much, 1 would have
dropped the course and changed into the regular 110 class which is all PASCAL. Therefore, my
initial reaction to the web was surprise, but I accepted it because it was a new horizon that 1 knew
nothing about.

2. What are your current reactions/acceptances/feelings/., to web
programming? How? and Why?

Although I was disappointed with the class structure in the beginning, I have begun to grow
attached to web programming. Just as in all programs, there are things that are special that I like
betler than other programs, but there are also the things that 1 find annoying.

I like the way webs produce such nice documentation. It is very understandable, and it looks very
organized and professional. It makes me feci good when 1 finish a program and it comes out with
such a nice output along with a program.

On the other hand, there are many things that I do not care for in web programming. For the keys
are not always what they seem, like the backspace key for example. Ihose things are hard to gel
used to. Another thing is the continuous auto-save function. It is realty distracting and it can break
your concentration easily having to wait on the computer. Finally, the lack of knowledge that we
were given on the webbing was also a disappointment. The program designs could have been even
better and more exciting if we would have had a little more information.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

226

My Thoughts On TeX and WEB In The Comp Sci 110H Atmosphere

I. What did you expect from this class and why?

Unlike the ususal computer science IIO-H student, I am neither a

freshman or a computer science major. I took the class oecause I liked

learning aOout the computer, and I wanted to oe able to use a variety of

high level languages proficently. I took a regular programming class my

freshman year, and I was bored to tears. I took an honors class in the hopes

of learning useful applications of pascal and naving mentally stimulating

programs that would challenge my intellect, not just my ablitlty to enter

code.

II. What was your reaction to WEB Initially?

At first, I felt confused. Like most young adults. I am very eager to

learn, and when knowledge Is kept from me, I get very frustrated and confused

I wanted to learn about the WEB and TeX immediately. I felt that the

information was not given out in an organized manner, and thus I really

didn't view WEB as important or necessarily useful. Maybe if it had been

taught in a more organized manner, I would have placed more importance on

it. However, I was impressed by what services the WEB could offer a programmer.

I could definately understand its usefulness to a programmer who had the

responsiblity of a project like X-Windows, and I also understood that it

was necessary for me to learn how to manipulate 1t with relatively simple

programs first. Overall, despite being sceptical, I was perfectly willing

to give WEB a chance.

III. What are your reactions to WEB now?

Now that I know much more about WEB and Tex, I can utilize more of

Its features and can appreciate it's value more. However, I feel that a

way of documentation that requires less work by the programmer will evolve

and that WEB is just a phase in the developement of such a tool. I am glad

that I am learning It. and I do feel that it has a proper place 1n the

comp sci 110-H class, but I also think tnat future classes will be using

other methods of documentation and organization for their programs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

227

Assignment #1

1. What did I expect front this class and why?

I expected a challenging programming course in which w e would learn vast
amounts o f PASCAL quickly. Through our knowledge o f PASCAL. I expected to write
com plex programs that went above and beyond the programs I had previously written in
high school. Through these programs, I expected to acquire complex problem solving
skills as well.

2. What was your reaction/acceptance to Web programming initially and why?

Initially I didn't like Web programming. I thought it pretty senseless, had no
meaning except to take up more o f our time. 1 thought that there wouldn't be practical
benefits from knowing Web. I have never really liked documenting my programs much, so
naturally a system designed around documentation wouldn't appeal to me.

3. What are your current reactions / acceptance / feelings to Web now? and why?

N ow that I know Emacs well enough to get around, it is not too bad. 1 still don't
enjoy programming in it much. It seems to make it harder than it actually is. I do see the
advantages o f documentation such as organization and the ability to emphasize portions o f
the program. I understand where documentation is important to me as a programmer as
well as other programmers w ho read my program. The Web system, though, just seems
too com plex for something that is elementary, at least to the extent that w e use Emacs.

S

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

228

1. What did you expect from this class and why?

When I enrolled in this class, 1 was under die impression that it would be strictly a course

in PASCAL programming. 1 was told during my summer registration conference dial Computer

Science 110 was a computer programming course that focused on the use o f PASCAL. When we

were told on the first day o f class that the empliasis in this course would lie mainly on problem

solving I was fairly surprised, but I did not think I would find it as difficult as it has turned out to

be. Because I have had absolutely no prior experience in PASCAL or WEB programming, I

have had some difficulty adjusting to this class. Alll lough this course hat turned out to be nothing

like what I expected, I still find it very interesting and 1 am learning more than I probably ever

wanted to know about computers, PASCAI-, and this wonderful new thing called WEB

programming.

2. What was your initial reaction/acceptance to WEB programming?

After our first exposure to WEB programming in this class, I decided that 1 hated it. I had

absolutely no idea what those funny commands mean or how they created such neat output, and

all the talk about EM ACS, WEAVE, TANGLE, andTEX made things even more confusing for

me. I couldn’t understand how this new type o f programming was supposed to make programs

easier lo read and mare understandable, because it only made things even more confusing for me.

3. What are your current reactions/acceptance/feeling:, to WEB now? Why?

After working with WEB programming since Use beginning o f this semester, I am happy lo

say that I think 1 almost understand it. 1 still have no idea why the codes I enter produce such

professional output, but at least now I can finally produce output. However, I still do not think

that W EB programming m ales programs more understandable. I think 1 would much ratlier have

a pure PA SC A L program in front o f me then spend hours flipping through chapters, sections, and

small pieces o f code trying to find the information 1 need. Although I think I still pretty much hate

it, I am trying my best lo adapt to this new method o f programming, and 1 hope that someday

(preferably pretty soon) I will disoover the benefits o f WEB programming.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

229

Web HoincWork

11 Wliat did > 0 1 1 expect front the class'’

I thotiglii that the class would deal with the normal introductory aspects to Pascal On the first day

of class I heard the teacher stress that the class was not "Intro to Programming" at all, we were to think of

it as problem so!\ ing. This did not bother me, I just thought that it meant this class was legitimate. And

as far as Pascal, the course has been every thing I had expected because ! managed to i;i\c a lot of this in

high school and have my own com puter.

2) What was your reaction to web?

At first, I did not take it seriously until 1 realized how' much more there was to every assigned

problem than just an hour of Pascal. Actually, for the first couple of weeks following the first project I

was pretty upset w ith web and thought it must be a crnicli for people unfamiliar to programming. The

real reason I did not like web was that with it hurt my grade in the class.

3) What do I currently feel about web?

By now. 1 am comfortable with Web and have no problem with it. Since I have had some

experience with Pascal beforehand. I'm sure 1 would have found it simpler if we learned on dial soley but I

can see why we use Web now.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

230

Homework Assignment
CPSC 110H

1.) My expectations for this class consisted of
obtaining a more thorough knowledge of Pascal. I had
already learned a little bit about Pascal in my high
school computer science class, but I was hoping to gain
a more extensive knowledge of Pascal in this class.
Even though my class last year was a whole year and
this class is only one semester, I expected we would
cover more in this class just because it is college and
more independent work can be given.

2.) I had mixed reactions when I heard we would be
using WEB programming. I was kind of apprehensive
since that would mean I would have to learn another
language just to program in Pascal. However, since WEB
programming is used in the real world, I was glad I was
getting a chance to learn it. Thus, overall, I was
happy we were using WEB programming.

3.) After learning the basics of WEB programming, I
have come to like it. Although it took a while to
learn some of the basic commands, it is now just as
easy to use WEB programming as it is to use the plain
Pascal Editor. It also allows for easier and more
complete documentation. Furthermore, it is also
beneficial to me since now I am familiar with one more
programming tool and may have a need for it in later
life.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

231

1. Before 1 started this class, I thought it would teach me more than the
average class about PASCAL. I thought that it would go in greater detail
about the intricacies o f PASCAL, I never thought that it would be more on
problem solving. All the honors classes I have been in just speeded up the
learning process, trying to fit as much information into the time availabe.

2. W hen we first started this class, I was wary o f how good 1 could do in it
without having any previous programming experience. When I found out that
we were programming in an environment new to everyone I knew that I
would have an easier time in the class, getting a good grade, etc.. 1 had never
heard o f WEB programming, 1 didn't know what to think. I had no problem
accepting it because 1 had no idea what it entailed.

3. Afier programming with WEB, I don't understand the need for it. I
understand that it helps with the programs readability, but a good programmer
should be able to make a very readable program by using comments. It might
make it easier to right modular programs, but it also makes a beginning
programmer lazy in his programming practices. I also found that it confused
me because it was hard to remember what I had and hadn't done until I
compiled it. Not only that, but in order to compile it, you have to go through
many steps that seems to make the debugging process much more difficult
than with a PASCAL specific editor. I can understand, and appreciate the
Emacs editor in a UNIX environment, but cannot understand the reason for
using it as an introductory course when you should worry more about the
PASCAL o f the program.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

232

1) What did you expect this c la ss to be, and why?

1 expected this class to be a little tougher. I expected that we would have covered the
material much more rapidly. I thought that in an honors class, everyone would have
known Pascal already, although now I see that this isn't the case, and I'm quite glad for
that fact. I was glad to see that in this honors class, there was a certain unity that isn't in
any o f my other non-honor classes. I was quite disappointed, however, that we weren't
taught any audio or visual concepts.

2) What did you think o f Web, in the beginning?

I've had mixed feelings about ThX and Web. At first when I had heard about it, but
hadn't used it, I thought that it was a good programming idea, which I still do. However,
once 1 began using it, I didn't care for the demacs editor. I also disliked all o f the T,.X
commands we needed to learn. 1 understand that T,.X is the primary editor for writing
technical documentation. I also know that it completely supports Web mode, which is a
quite handy, yet I feel that there must be a better editor that we could use, that would also
support Web.

3) What do you think o f Web now?

N ow I think that W eb mode, in theory, is an excellent idea. 1 also think that in practice it
works quite well. The only hesitations I have is with the Demacs program, and some o f
the limits o f the W eave program. I really have grown to hate the auto saving, and the
capitalization problem. In my opinion, no programming language should be case sensitive,
including Weave.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

233

1) Upon re g is te r ing (o r t h i s c l a s s , my f i r s t feeling w as e la t io n I had me

very l a s t , I do mean l e s t , r e g i s t r a t io n Needless to say, m y schedu le vio?i> i
exac t ly w ha t I had w an ted I f i l led t h e l a s t available s e a t in th i s c l a s s l

took two yea rs of advanced p lacem en t pascal In high school. Ci(course t n a t

sounds a lot b e t t e r than i t a c tu a l ly i s fly teacher moved very s low ly in

tw o yea rs w e covered pascal up to reco rds , d i e s and a r ray s This c u s s m e '

every day and we only nad four people in it. Despite ner fa l l a c ie s , dear

Mrs Cano w as thorough, so l did feel confident w ith what l i t t l e I did m o w

exp ec ted t n is c l a s s would oroaoen and enhance my pascal knowledge

f i rs Gano did not bel ieve in turoo, so I did expect (hope) to learn some luroo

/ u w j t l .1 Jim nnt j u p w J Jnim knnwnJyi name hut i.t'.s nine i j iu i nm a x i w i t / , .

spend my college l ife in the com p u te r lab, but I've a d ju s te d l c e r ta in ly dm

not expect web mode programming, which leads to m e nex t quest ion

2) The only word I can think of to b e s t describe my reac t io n to web mode

programming i t confusion Not a b lur ry confusion, o r even a puzzied

confusion, I w as .com ple te ly and u t t e r l y c lue less ly confused The second

choice word would be why? I t r ied to be open minded even though I could

not see any method to the m adness ' Even a f te r the completion of our f i r s t

lab I had no Idea how to use web mode f i rs Gano, b less h e r hea rt , w as a firm

bel iever in s t r u c tu re d progiamihltig Every detai l , cap i ta l iz a t ion , i p j c n j

e tc had to be f l a w le s s , order ly and organized I did not kno<v now to mat c

the t r an s fo rm a t io n ana I w as annoyed m a t most of my pee rs dio wnen i i n '

in troduced to web mode, i t i : l a i r to say m a t i aid not like n at a n n;. ' r„ ,

unders tand it.

3) W iser and more schooled in m e world of web, l have come to accept web

mode and even s e e It 's good points. It requ i res a d i f fe re n t approach lo

w r i t in g a program tha t Isn ' t all bad. i t would be very ea sy fo r a non-

p rogram m er to read a program w r i t t e n In web and fully unders tand the a im

of t h i program i t ' s nice to know how lo do something o th e r than ju s t s t r i c t

pasca l And the re i s a c e r t a in joy in weaving and texlng and not g e t t in g any

e r ro r s t h a t could not be a t ta in e d any o th e r way l would not use weo to

w r i t e a program un less i t w as required , but I might if I naan i a lready t nu ..

pasca l , bu t if I w as required to i t would be okay

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

www.manaraa.com

234

AsaignaentiResponse to HBB Programeing
Questions
1. Mot d id you e x p a c t from th ia c la a a and vh y?

To begin, I waa expecting CPSC 110 H to be a "review” claae from my
point of view. Having learned Paacal in high echool, I felt that I had
Bantered moat of the concepte that dealt with the language. Although I
underetand it, I find probleme dealing with refreahing my Bind to apecific

»

ayntax. (Bxamplcai where and where not to uae quote* with charactera,
acceaaing apecific fielde within record*, etc.)

2 . Mat waa your reaction/acceptance to VBB program aing i n i t i a l l y ?

Aftar encountering HBB atyle programming for the firat time I thought
"What bored peraon came up with thia ayatem?" I could not imagine why eomeone
would want to get into ay program and read page after page of documentation in
order to aee how my program functioned. I waa alwaya accuatomed to worrying
about whather or not the program work* and not writing a "paper" on how it
would work. Compared to uaing Think Paacal. the editor I had previoualy used,
DEMACS waa a nightmare. The uaer interface waa terrible and having to
Bkemorise five thoueand different keyatrokea waa not fun. I waa alao boggled
by all the Tex commando that were being thrown in my face by Pete. Tex
command* were a pain to learn and the time conaumed learning theae commands
really got me fruatrated. Por further elaboration on my initial feelings
concerning HBB pleaae aee the illuatration provided.

3 . Mat are your current reaction* a c c e p ta n c e /ta o lin g a to IjBB and vhy?

At thia time I understand why HBB programming can be useful when dealing
with the deaign and maintenance of a program. 1 suppose I never realised that
theae two concepte were the most important aspects of program deaign. In
addition, it is easy to pick up where I left off with out having to review
what I did previously. As for DBHACS. 1 still hate it; HBB keystrokes are too

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

235

numerous end are a hassle. A pull down menu or mouse Interface would ba a lot
more convenient. Tex can be confusing at times but once I start using certain
commands regularly I think that the time consumed will^reduced. Also, I find
that going to and from DEMACS in order to compile, weave, tangle, tex, and
edit is very inconvenient when It cornea time to debug a program. I probably
spend twenty percent of ny time in the lab waiting for the machine to re­
tangle, re-compile, and reload WEB every time I find the smallest bug. Then
again, X may just be one of the few people who is that picky. Please see my
second illustration to give you a better idea on my current feelings towards
WEB.

After WEB
Before WEB

1

Illustration Is Initial reaction towards WEB

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

236

Illustration 2i Current reelings towards WEB

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

237

E x p e c t a t i o n s of Compute r S c i e n c e l i O from S t u d e n t s

1) What did you expect from t h i s c l a s s and why?
/

Be i n g c o m p l e t e l y new t o t h e s c i e n c e o f c o m p u t e r s , I was

r a t h e r u n s u r e a s t o what t o e x p e c t f rom t h i s c l a s s . I had

d e c l a r e d my ma j o r a s Compute r S c i e n c e b e c a u s e I e n j o y e d wor k i ng

w i t h c o m p u t e r s u s i n g a p p l i c a t i o n s s o f t w a r e s u c h a s W o r d P e r f e c t ,

D i s p l a y W r i t e , Qu i c k e n , and , o f c o u r s e , games . I was a l s o f a i r l y

k n o w l e d g e a b l e w i t h commands and f u n c t i o n s o f DOS. However , I had

no i d e a how s i m i l a r programmi ng was in c o m p a r i s o n t o s i mp l y u s i n g

s o f t w a r e . I s u p p o s e i t was t h i s e x t r e m e l a c k o f kn o wl ed g e in

r e f e r e n c e t o p rogrammi ng and c o m p u t e r s o v e r a l l t h a i e n t i c e d me t o

t a k e t h e Compute r S c i e n c e 110 Honors . 1 hoped t h a t s i n c e t h e

c l a s s was much s m a l l e r , I would be a b l e t o g r a s p t h e p r og r ammi ng

c o n c e p t s and a p p l i c a t i o n s more r a p i d l y t h a n i f I had t a k e n t h e

r e g u l a r 110 c o u r s e . I a l s o hoped t o d i s c o v e r w h e t h e r o r no t I
I

t r u l y wa n t e d t o make Comput e r S c i e n c e my m a j o r and my c h o s e n

p r o f e s s i o n . I was q u i t e r e l i e v e d and a l i t t l e e x c i t e d when I

d i s c o v e r e d t h a t 1 e n j o y e d progr ammi ng a g r e a t d e a l , b u t , more

i m p o r t a n t l y , I e n j o y e d t h e d e s i g n p r o c e s s t h e mos t . In e s s e n c e ,

I was h o p i n g t o d i s c o v e r t h r o u g h t h i s c o u r s e w h e t h e r o r n o t I

would e n j o y s p e n d i n g t h e r e s t of my l i f e d e s i g n i n g p r o g r a ms . As

o f r i g h t now, I have been v e r y c o n t e n t w i t h what I h a v e l e a r n e d

i n t h i s c l a s s , and my e x p e c t a t i o n s ha v e been met i n f u l l .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

238

2) What was y o u r r e a c t i o n / a c c e p t a n c e w i t h i n t h e f i r s t c o u p l e o f

weeks t o WEB p r ogr ammi ng? Why?

S i n c e I have n e v e r programmed b e f o r e t h i s c l a s s , my

a c c e p t a n c e t o WEB progr ammi ng was a l m o s t i mmedi a t e and

u n q u e s t i o n i n g . A f t e r a l l , I was u n f a m i l i a r w i t h a l l o t h e r t y p e s

o f e d i t o r s and d i d n o t have a c l u e a s t o t h e a d v a n t a g e s and

d i s a d v a n t a g e s o f u s i n g EMACS i n c o m p a r i s o n t o o t h e r e d i t o r s such

a s Tu r b o P a s c a l . P u t t i n g a s i d e t h i s a p p a r e n t l a c k of e x p e r i e n c e ,

my f i r s t i n i t i a l r e a c t i o n t o WEB programmi ng was one a k i n t o

s u r p r i s e d amazement . A f t e r a l l , I was f a s c i n a t e d w i t h t h e f a c t

t h a t EMACS n o t o n l y r e a d o u r p r og r am code amid t he m u l t i t u d e s o f

t e x t , b u t a l s o r i p p e d out a l l of o u r d o c u m e n t a t i o n (t h r o u g h tt ie

TeX f u n c t i o n) and made an e x t r e m e l y n i c e , p r o f e s s i o n a l g u i d e t o

o u r p r o g r a ms . To p u t i t s i m p l y , 1 was v e r y i m p r e s s e d w i t h WEB

progr ammi ng and i t s many a d v a n t a g e s .

3) What a r e your c u r r e n t r e a c t i o n s / a c c e p t a n c e s t o WEB

pr ogr ammi ng? How? Why?

To be q u i t e h o n e s t , I b e l i e v e t h a t I am one o f t h e o n l y

s t u d e n t s who a c t u a l l y s t i l l b e l i e v e s Lhat WED progr ammi ng i s

w o r t h a l l o f t h e e x t r a work and d o c u m e n t a t i o n i t r e q u i r e s . S i n c e

I am new t o p r ogr ammi ng , I b e l i e v e 1 s e e t h e i m p o r t a n c e o f

c a r e f u l and a c c u r a t e d o c u m e n t a t i o n t o h e l p g u i d e i n d i v i d u a l s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

239

t h r o u g h t h e p r og r am. I have f i n a l l y had an o p p o r t u n i t y now t o

work w i t h t h e Tur bo P a s c a l e d i t o r , and I am whol l y c o n v i n c e d t h a t

WEB progr ammi ng i s q u i t e a b i t mure ad v a n ced and a d v a n t a g e o u s

t h a n t h e Tur bo P a s c a l e d i t o r . WEB programmi ng a l l o w s so much

more o p p o r t u n i t i e s f o r good d o c u m e n t a t i o n t h a n o t h e r e d i t o r s . I t

i s q u i t e e a s y t o g e t l o s t i n t h e code o f a complex p r o g r am, and ,

i f i t w a s n ' t f o r t h e n e a t d o c u m e n t a t i o n t h a t EMACS a l l o w s a

p rog r ammer t o p l a c e w i t h t h e c o d e , i t would be v e r y d i f f i c u l t t o

f o l l o w t h e p r o g r a m t h r o u g h i t s e n t i r e t y . I am an a v i d s u p p o r t e r

of c o mp u t e r d e s i g n s (p r o b a b l y b e c a u s e I would g e t l o s t i n MY own

code i f i t wasn ' t , f o r t h e d e s i g n t o h e l p g u i d e me t h r o u g h t h e

p r o g r a m) , and WEB p r ogr ammi ng i s t h e most e f f i c i e n t e d i t o r i n

a i d i n g d o c u m e n t a t i o n and d e s i g n t h a t I have e n c o u n t e r e d . As a

r e s u l t , I have a c c e p t e d WEB programmi ng as t h e most e f f e c t i v e

means f o r w r i t i n g co d e AND f o r w r i t i n g n e a t , p r o f e s s i o n a l

d o c u m e n t a t i o n .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

240

1. Whal did you expecl from this class and why?
1 expected to be in a boring class and g e l an easy-A because I have had
2 years experience in PASCAL . However this has not been the case. I
feel that I have learned b elter programming style, etc. from th is class.

2. Whal was your-resclion/acccplance/??? to WEB programming initially and
why?
At first I thought that WEB programming would would make it easier to
write programs since you don't really have to worry about order quite
as much as in conventional programming.

3. Whal are your current reaclions/acceplance/feelings/??? to WEB now and
why?
Now that I have more experience with WEB I don’t like it as much. I
have found that the small amount of ease in programming doesn't
compare to the headaches caused by using WEB. Overall, the concept is
great but the actions leave much to be desired.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

241

Opinion? QfCES.Ci 1.0

1. What did you expect from this class and why?
As a freshman, my expectations for computer science 110 were only

a part of my expectations for college as a whole. My first semester of
classes brought with them several Individual expectations.

However, my expectations for the computer science class were
considerably higher than for my other classes. One reason for this Is
simply because my major is computer science. I would naturally be
anxious about any computer related classes.

Another reason for my high expectations Is the fact that I enrolled In
an honors section. I was prepared to face a rather small class with a more
personal feel to It By comparison, I am Just a face In an extremely large
crowd In my other classes. I received the Impression during registration
that honors courses are more difficult than the other courses. Therefore, 1
came Into the class expecting a more difficult work load than the normal
computer science sections. I must admit that at times, writing the
program designs and program code seem like an enormous amount of
work. However, I generally enjoy programming, and I am usually pleased
to see the results of my work.

The one thing that 1 expected most from my computer science course
was learning the Pascal programming language. I had read the course
description In the undergraduate catalog, so I new that Pascal was the
language used In this particular class. Even before I read the student
catalog, though, I knew that I would be programming In Pascal. I had
talked to several people who had taken the course, and I was told by my
high school computer science teacher that generally Pascal was the Initial

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

242

language (aught at universities.
I expected my computer science course to contain a degree of

problem solving. However, I never expected It to be stressed as much as It
has been. I have always enjoyed programming, not because of the
language Itself, but because of the opportunity It presents to solve
problems. The one thing that I enjoy most about programming Is being
able to come up with a solution to any given problem, and more
Importantly, to come up with a solution that works. Obviously then, I was
prepared to encounter problem solving, but I expected the course to focus
more on the Pascal language

2. What was your reaction/acceptance to web programming
Initially and why?

Before this class, I had never heard of web-mode I had never heard
of Emacs or TeX. Even though I previously had used computers
extensively, most of my experience with them had Involved either a
Macintosh or windows based applications. Therefore, when discussion
turned from Turbo Pascal to web-mode, I became completely lost It was
all foreign to me. 1 Immediately became apprehensive and worried about
the class. Because I knew nothing about web-mode at that time, I
mistakenly assumed that It was something obscure that I would never be
able to comprehend.

Thankfully, the class eased Into the web-mode material relatively
gently. My initial shock gradually wore off, though 1 still had several
doubts. I feared that I would have to spend long hours mastering the
Information necessary Just to write a Pascal program, something I had
previously had quite a bit of experience doing. The experience made me
realize that there was more to programming than just knowing a high-
level language, and that I did not begin to know as much as I though I did.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

243

3. What are your current reactions/acceptance to web-mode and
why?

Despite my Initial reaction to web-mode programming, I have started
to really like It. It has proved to be much easier to master and .use than I
originally thought

Web-mode adds a rather strange twist to programming. It Is
certainly a more preferable means of documentation. This method
provides a neat, good looking report When compared to trying to sort
through the documentation as It appears In the listing of a Pascal program,
It Is a wonder that anyone could not prefer web-mode The web-mode
documents logically structured and easy to read. I love the fact that It
automatically creates a table of contents and an Index.

Web-mode provides a wonderful way to create a modular program.
I find It much easier to work out a problem step-by-step when using web­
mode I like breaking down the problem Into every little detail and then
finding a solution for each of them. I don't feel as restricted when I
program; I don't have to stick to strict, standard problem solving methods.
Instead, I can simply solve each problem in an order that makes sense to
me, and therefore, hopefully also makes sense to anyone reading the
document

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

244

1. Before I had registered for CPSC 110 I had talked to Ms. Rierson who is my
academic advisor from the MEP (Minority Engineering Program) office about what
this course would be about in general. Basically, what she told me is that it was a
programming class that Implemented Pascal. I had taken a Computer Science class
using Pascal in high school during my junior year where I was taught programming.
So, naturally I thought that this class would also be a class that focused strongly on
the language of Pascal and coding techniques. I expected to learn how to program
in Pascal and become well versed in its syntax and special features. These were
areas that my Computer Science class focused on In high school and since I used
the same book then as we are using now I thought the class would be basically the
same.

2. Prior to the first day of CPSC 110 I had never heard o f WEB programming
and its style and syntax were quite a change from what I was used to. At first, I
was completely overwhelmed, because I thought we were going to have to learn
several brand new computer languages (WEB, Tex, TANGLE, and WEAVE). I

thought that these were new programming languages and that I would be
completely losL

However, when I finally understood what W EB was used for, my anxiety
gradually subsided, because I realized that learning WEB was supposed to help
coordinate my thought process and organize my design so that the flow and
readability o f my program would be optimal. 1 was still a little worried afterwards,
because I was not sure if I would be able to handle Pascal and Demacs.

3. My opinion of WEB right now Is slightly different After I realized that it was
supposed to enhance my program 1 was really interested in learning it, but as
deadlines came around I realized that, although WEB was supposed to improve my
program it, succeeded more in delaying its completion. However, I must admit that
it takes out a lot of the pain that accompanies actual internal documentation of the
program itself.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

245

As a matter or fact, If had not been for the documentation that 1 had done in
Demacs there would be some problems that would have been more difficult to
solve. In summary, my opinion of WEB is this: If I manage my time working on
the lab assignment, then WEB enhances my program a hundred-fold, but if time is
short then WEB, becomes a great hindrance to the completion of the program
itself.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

246

Com puter Science Expectations and Fullfillments

Since Com puter Science 110 is required for my major, I d idn ’t read the course description in great
detail. The only expectations I had for the course m aterial were to learn anothei programming language and
to write program s for a grade. I chose honors because I knew the clast would be smaller, the program m ing
would be more complex, and because I could register early. I alto wanted a honors class because i t is easier
to get individual help in a small class environm ent.

W hen I first used ure6 to w rite a program , 1 d id n 't like it because it was more time consuming than
sim ply writing code. I ’ve always used descriptive variable names, b u t I ’ve never documented my program s
before. I was against uieb because I felt it was a waste of time to-describe every step in detail. I can tee
the logic behind the whole design process, but i t 's still a pain to manually calulate every test case, and I
still don’t understand the purpose of having an abstract when 1 say the same thing in my introduction and
problem description.

Overall, however, I see more pros than cons. The process of weave, tex, tangle, and tpc makes debugging
easier. The autosave feature of web is convenient for me, because it allows me to concentrate on what I ’m
typing instead o f worrying about saving my file in case the system crashes. Even though i t can be annoying
when I'm in high gear and in the middle o f a complicated thought or edit, 1 know autosave will save my
sanity one day when I think I've erased my entire file.

I think th a t this class has taught me more than if I had ju st taken the non-honors class. I now know the
benefits of using an editor, and th e necessity of the design process. While the web system has some quirks
th a t take some getting used to (like using d e l instead of the backspace key), it seems to be a better way to
program.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

247

1. What did you expect from this class and why?

To be honest, I really didn't know what to expect from this class. I know I

initially worried about being the only person in the entire class that didn't know

Pascal (which I wasn't). I also worried about taking this class in an Honors section

with no pervious computer programming experience, except in high school.

I wasn't too worried about learning the code itself, because my boyfriend,

Clint, assured me that I would pick it up quickly. So, far I have struggled with

some of the concepts with the code, but I feel that is probably due to the speed at

which we cover the material. Overall, I feel that I am learning the main concepts

o f Pascal, and I an beginning to feel confident in my programming ability.

2. What was your reaction/acceptance /feelings to WEB programming initially?

Why?

I was overwhelmed by the thought o f not only having to learn Pascal in an

Honor's class, but to also learn an editor. After the first couple times on the

computer, I began to feel more comfortable with WEB. On the shorter

assignments, I was pleased with the results and enjoyed making my initial designs

look good. It was a challenge to not only write a good design, but also make the

appearance of this design look desirable too.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

www.manaraa.com

248

3. What are your current reactions/acceptance/feelings to WEB programming

now? Why?

After writing numerous labs on the Web editor, I have decided this type o f

documentation is for the birds. I realize the importance o f documenting one's

work, but the amount of agony and grief spent on these programs was not worth

the output. The more complicated a design became, the more time I spent on the

web documentation. In the last couple of program designs (after the initial design

is due), I have found myself spending more time "weaving", "tangling", "texing",

and auto saving than I care to mention. If these processes did not take so much

time, I would have little objection to using such an editor.

It would also be helpful to design an editor that could be used with a mouse.

The process of cut and paste is quite evil with WEB, and by using a notebook on

my PC or the edit mode in DOS, I can cut my editing time in half.

I also feel that if is totally unfair to test student over Emacs commands. This

memorization is not only a total waste of brain power, but also a waste of time,

especially since you provided the class with emac "cheat sheets".

Overall, I have really enjoyed this class. I don't want you to think because I

dislike WEB that I haven't enjoyed the work I've done in this class. I feel that the

time spent on WEB, might have been put to better use somewhere else. But, then

again, I could be wrong. I have no idea how important documentation is, or how

effective this editing program can be. I am just ieartdng. Maybe with enough

exposure, I would learn to like WEB or maybe some other editor like LATeX. But

again, I have enjoyed the problem solving aspect of this class. It is a challenge that

I have enjoyed struggling with.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

249

1) What d id you e x p e c t from t h i s c l a ^ s ? and Why?

I e x p e c t e d to l e a r n a program la n g u a g e . I was not

l o o k i n g f o r problem s o l v i n g s k i l l s . I am a Math major and

t h i s i s th e o n l y Comp.Sci . I have to t a k e . I took the

Honors s e c t i o n b eca u se I wanted t o r e g i s t e r e a r l y .

• *•

2) What was your r e a c t i o n / a c c e p t a n c e / . . . t o web

programing i n i t i a l l y ? and why?

I was OK. I have n o t h in g to b ase my r e a c t i o n on ,

b e c a u s e I have no p r e v i o u s e x p e r i e n c e . I t i s h e l p f u l f o r

s h o r t programs and I t h e l p me b e c a u s e I d i d n ’ t know how to

program a t a l l .

3) What was your c u r r e n t r e a c t i o n / a c c e p t a n c e / f e e l i n g

. . . t o web now? and why?

I h a te i t . I t C l u t t e r s th e f i l e . I wi sh I c o u ld j u s t

w r i t e a program. I can s e e why YOU would use i t b ut f o r
\

me i t i s a p a i n . I t t a k e s to long t o open the demacs f i l e

i t t a k e s to lo n g to t a n g l e and t e x and weave.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

250

It'Aat did you expect from this class and why?

W hen I signed up fot th is cU ts, 1 did not know w hat to expect. I signed up for the class because I am
interested in taking a Al course (CPSC 320). In order to do th a t I either had to take EKGR 109 or CPSC 110.
Being a Biochemistry Major, EKGR 109 has absolutly no bearing on what I want to do in life. I took CPSC
110H because I figured the class would provide me with the background necessary to prepare me for CPSC
120 and eventualy CPSC 320.

What was your reaction to W EB programing initially and why?

Initially, I looked a t W EB program m ing as interesting and was looking forward to doing it. I have had
very little experience with Pascal in the past and saw the need for the documentation. 1 have looked at
program s in the past and n o t understood anything ab o u t w hat they were trying to accomplish. T his causes
great problems when trying to modify the program.

What is your current reaction to W EB now and why?

I still enjoy the WEB programing. T he problem I have is the efficency of the interface. The tim e it
takes to launch emacs and then the tim e it takes to tangle, weave, and TEX the WEB program is excessive.
Emacs is a tedious way to debug a program because every little change requires changing the WEB source
code and then tangling and compiling the code. T his takes a large am ount of time th a t could be more
efficently used in editing and debugging the program in a Turbo Pascal editing environment, but in doing
th is the program m er m utt go back to the WEB code and change the Pascal code later.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

251

When I decided to take Computer Science I w si expecting to leam to program in

Pascal uring IhrtxjPascaL I did not know of any other Pascal ©diton, nor did I know of

Emaca, WEB mode, Tjg^, or weaving and tangling. I though! that the honors part would

involve only m an in-depth jrogramming and maybe an accelerated pace. This is what I

w ai expecting from what I had experienced and from what I had heard.

When I found out we were going to uae Emacs, it waant a big deal, it was just a

matter of learning a few command keys. However, WEB mode programming was

something totally alien to me and the thought processes involved seemed totally backward

to me, but I thought it had possibilities. I saw the boufits of WEB and was prepared to

leam i t This acceptance did not endure long though.

After being repeatedly foiled in my attempts to add Pascal in to the TgX material I

developed for my firet lab, I began to really dislike the backward way in which we were

programming. Additionally, the lack of a practical method of drilling myself in the Pascal

I was learning from the book and the lecture soon left me drowning in a whirlpool of

incomplete labs and assignments. I am still a little shaky on Pascal itself, and have no

chie about plugging the little Pascal that I do know into a WEB file in such a manner that
t

it functions properly. I like the documentation produced by the WEBs but would be much

happier using straight programming in TwboPasc&l with internal documentation in the

program, not a program within the documentation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

252

1

What I Expected From This Class

After reading the course description of Computer Science
110, I was unsure of what to expect. By the wording in this
description, 1 expected the class to be more lecture oriented and
less programming. I thought this class would just be an
introduction to the process of programming. I did not expect us
to jump into programming as fast as we did. I figured that the
first semester we would learn the practices and the second
semester we would put then to use.

Also, I thought that I would have no problems with this
course. Such is not the case. I must say that I have not
reached my goals in this course. I guess 1 thought that since
all the other courses in computers that I have taken have been
easy for me, that this one would be too. That was a bad
assumption.

The final thing that I expected from this course was the
closeness that accompanies having small classes. I thought that
since this was an honors course the class would be closer as a
whole that in my other classes. For some reason I exposed this
class to be more similar to ay honors classes from high school.
My honors classes were very close and the students had a very
close relationship with the teacher as well as each other. 1
guess comparing high school classes to college classes was naive
on my part, but that is what I expected. I an sure that students
in this class will cross paths again.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

253

2

My Initial Reaction To WEB Programing

My initial reaction to WEB programing will probably differ
greatly front other students due to my lack of previous experience
with programming. My first reaction to WEB programming was one
of utter confusion. As far as including the definitions and
explanations within the program body, this was something new to
me. 1 had no idea what the "limbo" material did. To tell you
the truth, I though that was part of the PASCAL program. For the
first program I had completely no idea what was going on. I was
trying to figure out what the individual statements in the
"limbo" material did. As you can tell, those first two or three
weeks were very tense for me. Later on, I formed different
opinions about WEB programming.

By the second program I felt more comfortable using EMACS.
During this phase, I felt that doing the design and then "filling
in" the code was a pretty good idea. I also liked the fact that
longer descriptions can be used and still be understandable.

\

This phase lasted up until about the fourth and fifth programs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

254

3

Current feelings About.WEB Programing

Recently, I have formed new opinions about Programming using
WEB mode. Up until the last few programs, 1 had a pretty high
opinion about using it. Now, 1 am not really sure how I feel.
WEB programming has its advantages and disadvantages.

On one hand, I like how the output is formatted. I also
like how the text and code is integrated using WEB mode better
than it would be otherwise. The thing I like most about
programming using WEB mode is being able to declare variables or
anything in any order and call them in the main program. I would
like WEB programming even more if 1 knew how to do more of the
specialized procedures. More handouts with examples would help.

More recently I have discovered some of the disadvantages
that are associated with using HEB programming. When working
with longer programs, the compilation and similar processes are
much more tedious. If you do not make programming errors, I
guess you do not have to worry about correcting them. But if you

l

do make mistakes, then correcting errors with WEB programming is
b Ib o very tedious. It would not be so bad if you did not have to
close your EMACS file every time, but you do.

My opinion about WEB programming changes nearly every time I
use it. Right now I can not decide whether EMACS is more of a
help or hinderance. It is slow, but the printed product looks b o
much more elegant. Which would you rather have?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

255

Evaluation of CPSC 110

1. when I enrolled in Computer Programming 110 I was expecting
a class that whould teach me the basics of programming In Pascal.
In taking a honors I was expecting to be In a class that was
taught with a greater degree of knowledge and to a class with
higher degree of Intelligence. I was also expecting the class
to be taught be a professor who whould teach the Pascal language
to a greater degree than a regular class professor woiild. Not
knowing how to program In Pascal was one of the draw backs of
signing up for this class but I figured that I would learn more
in the class If It was an honors class than a regular class.
2. As I stated In the previous paragraph 1 have not programmed
In Pascal before so I do know the differences between web
programing and other types of systems. In my untutored opinion
the web program Is very helpful In putting together a program
that Is very easy to understand and also vary easy to correct
If there is a change In the program. I really cannot give any
comparlsions between this style of programing because of my
lack of knowledge in this subject. I have however tried to
program in turbo pascal and found that web style of programing
was easier for me however, I an not sure If it is just that
I am used to the web programing so much that everything else
Is just foreign to me.
3. Right now I feel that the web mode is a very useful tool
for programing in Pascal. If It wasn't for the web programing
system I do not feel that I would be able to complete any of
my programs to the degree of accuracy that so far all my programs
have been. The web programing has helped me to understand
how to program In Pascal better than any other program probably
would. The only thing that I noticed about the turbo Pascal
that I wish was on the web programing was to be able to show
you exactly were your errors are while the program is still
up on the screen.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

256

Question 1: What did you expect from this class and why?

-Before I started this class in the fall, I expected several things from it. Being an honors
course, I expected the class to move at a quicker pace and to cover more than a regular
course. I expected hands on experience with current hardware and software because o f
the large amount o f resources available at Texas A&M. I expected to leam a little about
the campus computer network because, as a Computer Science major, I will need to know
how to use the computer facilities. I also expected to gain some knowledge about the
current computer industry, realizing that the purpose o f college is preparation for real
world involvement. Last, I expected an instructor who is enthusiastic about teaching.

Question 2: What was your reaction to Web programming initially? Why?

After the first few lectures and before working extensively with Web programming, I
was confused about how it worked and didn't see any dramatic differences between it and
the Turbo Pascal editor. I was unsure o f Web simply because I didnt have any experience
working with it. It was just an abstract idea in my mind and its uses were vague to me.
However, I did accept the program and was eager to leam more about it. N ow that I
reflect on it, I do see that my current impression o f Web was formed by being open
minded and by willingness to accept the program beyond its initial presentation.

Question 3: What are your current reactions to Web? Why?

N ow that I have been able to work extensively with Web, I see that it is a very useful
tool, and I enjoy doing labs with it. I believe it is useful because o f the way it forces
organization and the emphasis it places on planning. I am beginning to understand the
importance o f program documentation, and I realize that Web is very valuable in that
regard. I enjoy working with Web because I enjoy writing, I like the style o f documenting
text that Web uses, and I like the control the user has over the output. M y overall
impression o f Web now is positive. I do see the advantages it has over the Turbo Pascal
editor, and I am glad I have the chance to use it.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

257

Programming I ?

I knew this class was a programming one because of the title and
description in the 116th Undergraduate Catalog. Plus, I had a good
idea that the language would not be in BASIC; that one's too simple.
The notion of programming really did not hit me until I actually got
into class on the first day. To tell you the truth, I didn't know what to
expect from this class; I took it because it's the first course any
Computer Science major must take, and I took the honors because I
felt it would be veiy beneficial to have an honors class that was in my
major. As to the contents of the class, I had no idea what was to be
expected, nor did I really care, since I had to take it anyway. All I
knew was that I would fmd out more about the class when I got there.

When I first got into class and realized it would be programming
in Pascal, I thought, "That's cool." But, when you started mentioning
the WEB program/file and weaving and tangling, I began to think,
"Am I in the wrong class? This sounds like basket weaving. What
does basket weaving have to do with computers?" I am not kidding
you; I really thought that. The first day I came to fully understand
what you were talking about when you said "Tangle" and "Weave”
was the day when you gave us the diagram of the WEB world, in
which the WEB file goes down the two paths via Tangle and Weave.

When we actually started working with Emacs and our WEB
files, I was a little leery about it because of all the strange, new

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

258

commands. I didn't let it get to me because Tm the type of person that
just goes with the flow. When we got a chance to see the final output
of the DVIng, I was amazed and awed that the computer could do that.
I thought it was really interesting; yet, I still had a few little doubts
here and there about a variety of items. At the time, however, I was
still trying to get settled down into college life, so I didnt worry over it
too much.

Now that we have done several labs using Emacs and WEB, I
have a better feeling about it. I like it WEB allows me to write down
my thoughts at the same time and place where my code is written. Ifs
very helpful in keeping your thoughts straight in your head. It allows
you and others to know what you did at a specific point in the program
and why you did it that way. Also, breaking up the code into different
sections makes it a lot easier to write code, for two reasons. The fust
is because this allows parts of code to be written and placed in the area
where the documentation for that code is found. The second is that by
breaking down the code into little parts it is easier to work with and
figure out the problem and the bits of code to go with that problem.
This stepwise refinement really helps in turning a monster task into
simple, easy assignment statements. WEB and all its attributes,are
very useful to programmers and very beneficial to everyone involved
with the program.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

259

CPSC110

Nly initial expectations for the Computer Science 110 honors class were numerous.

My primary expectation o f the class waB the size. For fourteen yean I attended a small

private school where the classes never exceeded 20 and by enrolling in the CPSC 110

honors I hoped that the size would be similar to that o f my high school. I fell that this was

not an unreasonable expectation because the way in which A & M presents the honors

program it can rally be deduced that the size o f any honon course would be significantly

smaller than the regular equivalent

My second expectation o f CPSC 110 honors was that it would be taught by

someone who was not only interested in the field but also energetic about the class. This

expectation was also reasonable in my mind simply because, that is what the honors

program is all about, teachers and students who care. This brings me to the third

expectation and only expectation that has not been adequately fulfilled. I had hoped that

the class would be made up o f students who were not taking the course just to fulfill their

honora requirements but rather students who had the desire to leam everything that they

could, Students who came to class because they wanted to be there, and students who

respect those around them and the teacher. NeedlcBS to say, that is not the case.

My final expectation of CPSC 110 honors was that it would solidify my, base in

problem solving and reinforce my knowledge o f Paschal. The course has thus far done an

outstanding job of both solidifying my base and reinforcing my knowledge o f Paschal.

My initial reaction to the web style o f programming was one o f complete

confusion. We were thrown into the lab and left to understand the concept by trial and

error. Not to say that there was absolutely no instruction about the nature and purpose o f a

WEB file, but, for myself, someone who has previously programmed in paschal, there was

not enough explanation as to the advantage, the proper implementation, or the integration

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

260

of code into a WEB file. The first lab was intensely annoying. We had no idea what was

happening, what we were typing in, and most importantly, why we got all the errors and

how were we going to correct them. The errors in the TgX were the most frustrating

because we had absolutely no idea what the TjtX commands were doing and no way of

finding out if we were working in the lab at night or some other time that help was not

available.

However, 1 have been converted. I now believe that the WEB style of

programming is much better than that o f any other I have thus far encountered. The

reason for this one hundred and eighty degree turn around was that when I attempted to go

back and edit a program that I had previously written in my high school career it took me

several hours to even determine the general area that I needed to concentrate on. The

program was an address book that used arrays, records, color, windows, and everything

else that is now nothing more than code with no rhyme or reason as to why. I can now not

only see the advantage to the WEB style o f programming but I can appreciate it.

However much I appreciate the WEB style o f programming it is still to this day

very frustrating at times. The only thing that I could think o f to alleviate the confusion

would be to teach more of what the TgX is all about and the commands. But perhaps the

best way to team is trial by fire.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

261

Reactions to Class

1. What did you expect from this class a,id why? I didn't
really know what to expect I had heard that it was ju st
basically PASCAL, so I expected a m ore in-depth version o f the
computer science class that I took in high school. I assumed
that the Turbo editing environment would be used, simply
because I didn't know about any more sophisticated or
pragmatic editors. Since the course is honors, I guessed that the
class size would be sm aller and the assignments would involve
more thought than the regular sections' problems.

2. Il'hat was your reaction/acceptance/whatever to WEB
programming? (In the first couple o f weeks o f class) Why?
I found EMACS to be a cryptic, bulky editor and WEB to be a
slow, inefficient way o f programming. I found myself spending
the same amount o f time planning the program and developing
pseudocode, and taking longer to type the program into the
machine. Though I recognized then the value o f WEB
programming for maintenance and readability, it annoyed me.

3. What are your current reactions/acceptances/feelings/etc.
to WEB? Why? I recognize the importance o f WEB, but I still
do not like it. I am glad that I am learning it, but.l wish it was
never invented. I would probably feel better about WEB if I
had not already learned to program; it would be more successful
with first time programmers. Since I already think in terms o f
"what should happen next in this program" the quality o f WEB
that allows the program to be assembled from bits scattered
throughout the document is o f little use to me. I tried to write
like that, but I had so many compilation errors (variables

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

declared too many times, etc.) that I abandoned this style. I
now write the comments, then write the whole program, in the
order that I would enter it into a Turbo editor. I still think that
the EMACS editor is very inefficient and quite obnoxious, but
there have to be s o m e programs for computer scientists of my
generation to improve. Another frustration I have with WEB is
that I have to program in the lab; I do not know of a way to use
my machine at home. This would be less of a problem if I
could somehow access EMACS over my modem, but I d o not
know that this is available. I realize that, as a C.S. major, i need
to get used to cryptic, awkward systems, but WEB
programming is still a challenge.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

263

$10 C la s t E valuation QUESTION AND ANSWER SESSION 1

1. Question and Answer Session.

2.

3. CPSC 110-H

4.

5. What did you expect from this class and why?

8 . Actually, 1 d id n 't know w hat to expect from th is class. Because it was the first sem ester of my freshman
year, I cou ldn’t m ake any reasonable assum ption as to w hat was going to happen. T he whole arena of
college life and academics waa a complete m ystery to me. In spite o f older friends talking to me about
college, som ething was always lost in the translation . It seemed more sensible to enter this new world
w ithout any preconceived notions. Throw in the fact th a t this was an honors course, and xpeclations lose
even m ore of their significance. W ho can say wht tw ists and turns an honors course will take? Because of
all th is uncertainty, I decided to not develop expectations where they would only serve to confuse the issue.

7. What was your reaction to Web programming initially and why?

8 . At first I couldn’t understand why we needed to know Web program m ing. I t seemed unim portant.
1 d idn 't realise the significance o f program docum entation. I thought th a t as long as I wrote a program
code th a t worked, there wasn’t m uch else to know. Chalk it up to ignorance on my p art. B ut we were
told i t would definitely help us in the long run, and th a t was enough to m ake me follow through. In the
beginning, the ideas behind Web programming were very confusing to me. I t took me a long time to realize
th a t i t was a com bination of docum entation and code. Up to this po in t, I 'd had extrem ely little experience
in docum entation. The entire concept of writing down in prose form w hat a program was supposed to
accomplish was relatively new to me. Because o f th a t, I was probably a little intim idated. And again, I
couldn’t do anything bu t trust in the instructors and try to understand w hat was going on. T h a t’s typically
what a stu d en t does to learn anything.

8. What are your current reactions to Web now and why?

10. I see now how im portant Web, o r any docum entation program m ing, can be. I also understand the
im portance of clear design tactics to facilitate m aintenance. T he actual code seems to be of somewhat lesser
priority. I see th a t the whole idea of design and docum entation is developed to make code form ation less of
a hassle. O f course, I ’m still a t least a little intim idated by Web. I t seems th a t the more I find ou t about
it, the m ore there is th a t I don’t know. It gets frustra ting a t times, b u t I ’m sta rlin g to see th a t pa tte rn in
everything I’m learning. So, 1 guess i t ’s ju st a n a tu ra l progression of learning. Finally, Web program m ing is
definitely a useful tool, and I ’m glad I had the opportun ity to be introduced to it before going further in my
com puter science career.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

264

PunteipinioN Rsjianm/j I
Cutif Sum niM

1) W an ao m sxpsei non m e turn mo m nJ
I expected this class to be much more PASCAL inten-'

sive, mainly due to the description of the course that was
presented during Freshman orientation. The title of the
course is 'Programming I,1 thus leading to the conclusion
that the primary thrust of the course would be program­
ming.

2) W m viitf m o osoaioo mo oeanm a jo WEB m autusim mo
intv?

My initial reaction was disgust. The course seemed to
be going in a different direction than 1 had hoped, and I
honestly did not like it. WEB style programming seemed
to be a time consuming and wasteful process that was
nothing more than programming documentation overkill.

5) W hin ms m o euoosn onniom mo o a m m a ro WEB moat mo
m v?

I am now comfortable with the WEB process. After
working (many hours!) with the programming style, I feel
that I can be fairly efficient with WEB. The TgX experi­
ence has its obvious advantages, and the emacs editor ex­
perience will be useful in the future. However, the style in
which the programs are documented still has a wordy and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

265

cumbersome feel. I was taught to document a program
with remark statements in a way that is concise and de­
scriptive. The WEB style programming is a departure
from this in-program style that is still uncomfortable for
me.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

266

1. Wiat did you expect from this class and uhy? Actually, I expected computer
science to be my worst class this semester. The first day of class scared me
half to death. Since I knew nothing about Pascal or programming (and assumed
everyone else did). I was somewhat paranoid in general. When ve'started
talking about WEB and TgX, literate programming and editing environments, etc.
I began to ponder dropping the class and losing ay honors credit.
2. What was your reaction/acceptance to h'EB programming initially? As was
stated in the last response, ay very first reaction to WEB was to run as far
away from the computer Bcience department as possible. After the first lab, I
started feeling a little bit better because no one else in the class under­
stood WEB either. One day in the middle of the second lab, something sort of
hit me and it all kind of fit together— the way modules work and what the dif­
ferent commands do, etc. I understood why WEB was used to maintain programs
mainly because when I looked at a turbo written Pascal program, it just made
absolutely no sense to me.

3. Vhat is your current reaction/acceptance to HEB? Now, I’m pretty much
enjoying the class. It seems easier to me to work with a WEB— the design
process work out the programming problem before you code, and the actual WEB
file helps me keep my code segments separated and organized. The only thing I
really like better about regular Pascal is declaring all the variables, con­
stants, and types together (which is fine because it can still be done in a
WEB). I might feel differently if I had known Pascal before taking this
class, but I’m fairly comfortable with the WEB format and simple TgX and emacs
commands at the moment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

267

1. Because it it catted an' ’Hono**’ clata, I expected the
P40CC44 06 teaching Tunbo Pascal to be acceteeated. I atao
expected it to be about 90t tab* because that i4t4cne you
actuatty teann how to wniie a peognan.

2. When I waa li*4t introduced to enac4, I Jett cutiou4,
because it wa4 4o»ething new, and atao wond«ou4. because X
thought we we«e to teaea Pnognanning in Turbo Paacat, and
not cdtttn9 a tcxtfite uaing enac4.

3. Now, 4ince I have becoae a titite iamitia*. with emac4. I
bctievc. that it might be a good idea to acquaint 4tadent4
to emac4, iA thenc i4 a good chance 06 then needing it a4
they piogne44. I betievc that having ue edit out tunbo
Paecat onogna«4 and docunent4 thnough enac4 i4 inappropriate
Aon thi4 cta44, 4ince nuch o(, oun tine to actuatty 'write a
pnognan' 44 toat on enaco, weave, tex, tangte etc.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

268

VITA

Deborah Lynn Byrum Dunn was born on July 31 ,1961 , in Washington, D. C., to

Burton and Aura Byrum. She received a B. B. A. in Business D ata Processing in 1979

from Stephen F. Austin State University. Upon completing her bachelors degree, she was

employed by Mobil Oil Corporation. She received an M. S. in Computer Science at

Stephen F. Austin State University in 1989. She began work on her Ph. D. at Texas A&M

University in June of 1989. Since that tim e she has worked as a graduate assistant

teaching and is currently a lecturer in the Computer Science Department. She may be

reached at the Department of Computer Science, Texas A&M University, College Station,

Texas, 77843-3112.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

